Visual Object Categorization Based on Hierarchical Shape Motifs Learned From Noisy Point Cloud Decompositions

作者: Christian A. Mueller , Andreas Birk

DOI:

关键词:

摘要: Object shape is a key cue that contributes to the semantic understanding of objects. In this work we focus on categorization real-world object point clouds particular types. Therein surface description and representation structure have significant influence accuracy, when dealing with scenes featuring noisy, partial occluded observations. An unsupervised hierarchical learning procedure utilized here symbolically describe characteristics multiple levels. Furthermore, constellation model proposed hierarchically decomposes The decompositions are described as constellations symbols (shape motifs) in gradual order, hence reflecting from local global, i.e., parts over groups entire combination multi-level surfaces decomposition shapes leads which allows conceptualize shapes. discrimination has been observed experiments seven categories instances sensor noise, occlusions well inter-category intra-category similarities. Experiments include evaluation approach, comparisons Fast Point Feature Histograms, Vocabulary Tree neural network-based Deep Learning method. conducted alternative datasets analyze generalization capability approach.

参考文章(10)
Umar Asif, Mohammed Bennamoun, Ferdous Sohel, Efficient RGB-D object categorization using cascaded ensembles of randomized decision trees international conference on robotics and automation. pp. 1295- 1302 ,(2015) , 10.1109/ICRA.2015.7139358
A. K. Jain, M. N. Murty, P. J. Flynn, Data clustering: a review ACM Computing Surveys. ,vol. 31, pp. 264- 323 ,(1999) , 10.1145/331499.331504
S. Biasotti, L. De Floriani, B. Falcidieno, P. Frosini, D. Giorgi, C. Landi, L. Papaleo, M. Spagnuolo, Describing shapes by geometrical-topological properties of real functions ACM Computing Surveys. ,vol. 40, pp. 12- ,(2008) , 10.1145/1391729.1391731
B. Alexe, T. Deselaers, V. Ferrari, Measuring the Objectness of Image Windows IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 34, pp. 2189- 2202 ,(2012) , 10.1109/TPAMI.2012.28
Andreas Richtsfeld, Thomas Mörwald, Johann Prankl, Michael Zillich, Markus Vincze, Learning of perceptual grouping for object segmentation on RGB-D data Journal of Visual Communication and Image Representation. ,vol. 25, pp. 64- 73 ,(2014) , 10.1016/J.JVCIR.2013.04.006
Esa Rahtu, Juho Kannala, Mikko Salo, Janne Heikkilä, Segmenting salient objects from images and videos european conference on computer vision. pp. 366- 379 ,(2010) , 10.1007/978-3-642-15555-0_27
Maximilian Riesenhuber, Tomaso Poggio, Hierarchical models of object recognition in cortex. Nature Neuroscience. ,vol. 2, pp. 1019- 1025 ,(1999) , 10.1038/14819
Irving Biederman, Recognition-by-Components: A Theory of Human Image Understanding. Psychological Review. ,vol. 94, pp. 115- 147 ,(1987) , 10.1037/0033-295X.94.2.115
Hasan F. M. Zaki, Faisal Shafait, Ajmal Mian, Convolutional hypercube pyramid for accurate RGB-D object category and instance recognition international conference on robotics and automation. pp. 1685- 1692 ,(2016) , 10.1109/ICRA.2016.7487310