Maximum-entropy image restoration: Lagrange and recursive techniques

作者: Edward S. Meinel

DOI: 10.1364/JOSAA.5.000025

关键词:

摘要: A new solution to the maximum-entropy image-restoration problem, assuming Poisson-noise statistics and multinomial object statistics, is presented. set of nonlinear equations solved using Lagrange multipliers in a way analogous that Frieden Wells [ J. Opt. Soc. Am.68, 93 ( 1978)]. However, unlike Frieden–Wells solution, presented here derived without making approximations noise statistics. This equivalent obtained an earlier paper recursive methods Am. A76, 787 1986)]. The simplicity permits interpretation shows how method arrives at maximally smooth solution.

参考文章(7)
Wernecke, D'Addario, Maximum Entropy Image Reconstruction IEEE Transactions on Computers. ,vol. 26, pp. 351- 364 ,(1977) , 10.1109/TC.1977.1674845
B. Roy Frieden, Donald C. Wells, Restoring with maximum entropy III Poisson sources and backgrounds Journal of the Optical Society of America. ,vol. 68, pp. 93- 103 ,(1978) , 10.1364/JOSA.68.000093
S.F. Burch, S.F. Gull, J. Skilling, Image restoration by a powerful maximum entropy method Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing. ,vol. 23, pp. 113- 128 ,(1983) , 10.1016/0734-189X(83)90108-1
R. Willingale, Use of the maximum entropy method in X-ray astronomy Monthly Notices of the Royal Astronomical Society. ,vol. 194, pp. 359- 364 ,(1981) , 10.1093/MNRAS/194.2.359
B. Roy Frieden, Unified theory for estimating frequency-of-occurrence laws and optical objects Journal of the Optical Society of America. ,vol. 73, pp. 927- 938 ,(1983) , 10.1364/JOSA.73.000927
Edward S. Meinel, Origins of linear and nonlinear recursive restoration algorithms Journal of The Optical Society of America A-optics Image Science and Vision. ,vol. 3, pp. 787- 799 ,(1986) , 10.1364/JOSAA.3.000787
Edwin T. Jaynes, Prior Probabilities IEEE Transactions on Systems Science and Cybernetics. ,(1968)