Detecting Differential Expression in RNA-sequence Data Using Quasi-likelihood with Shrunken Dispersion Estimates

作者: Steven P. Lund , Dan Nettleton , Davis J. McCarthy , Gordon K. Smyth

DOI: 10.1515/1544-6115.1826

关键词:

摘要: Next generation sequencing technology provides a powerful tool for measuring gene expression (mRNA) levels in the form of RNA-sequence data. Method development identifying differentially expressed (DE) genes from RNA-seq data, which frequently includes many low-count integers and can exhibit severe overdispersion relative to Poisson or binomial distributions, is popular area ongoing research. Here we present quasi-likelihood methods with shrunken dispersion estimates based on an adaptation Smyth's (2004) approach estimating gene-specific error variances microarray Our suggested are computationally simple, analogous ANOVA compare favorably versus competing detecting DE false discovery rates across variety simulations real

参考文章(18)
Ricardo ZN Vêncio, Helena Brentani, Diogo FC Patrão, Carlos AB Pereira, Bayesian model accounting for within-class biological variability in Serial Analysis of Gene Expression (SAGE). BMC Bioinformatics. ,vol. 5, pp. 119- 119 ,(2004) , 10.1186/1471-2105-5-119
Yanming Di, Daniel W Schafer, Jason S Cumbie, Jeff H Chang, The NBP Negative Binomial Model for Assessing Differential Gene Expression from RNA-Seq Statistical Applications in Genetics and Molecular Biology. ,vol. 10, pp. 1- 28 ,(2011) , 10.2202/1544-6115.1637
J. D. Storey, R. Tibshirani, Statistical significance for genomewide studies Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 9440- 9445 ,(2003) , 10.1073/PNAS.1530509100
Dan Nettleton, J. T. Gene Hwang, Rico A. Caldo, Roger P. Wise, Estimating the number of true null hypotheses from a histogram of p values Journal of Agricultural Biological and Environmental Statistics. ,vol. 11, pp. 337- 356 ,(2006) , 10.1198/108571106X129135
Jason S. Cumbie, Jeffrey A. Kimbrel, Yanming Di, Daniel W. Schafer, Larry J. Wilhelm, Samuel E. Fox, Christopher M. Sullivan, Aron D. Curzon, James C. Carrington, Todd C. Mockler, Jeff H. Chang, GENE-Counter: A Computational Pipeline for the Analysis of RNA-Seq Data for Gene Expression Differences PLoS ONE. ,vol. 6, pp. e25279- ,(2011) , 10.1371/JOURNAL.PONE.0025279
Gordon K Smyth, Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments Statistical Applications in Genetics and Molecular Biology. ,vol. 3, pp. 1- 25 ,(2004) , 10.2202/1544-6115.1027
Mark D Robinson, Davis J McCarthy, Gordon K Smyth, None, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. ,vol. 26, pp. 139- 140 ,(2010) , 10.1093/BIOINFORMATICS/BTP616
J. C. Marioni, C. E. Mason, S. M. Mane, M. Stephens, Y. Gilad, RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays Genome Research. ,vol. 18, pp. 1509- 1517 ,(2008) , 10.1101/GR.079558.108
R. Blekhman, J. C. Marioni, P. Zumbo, M. Stephens, Y. Gilad, Sex-specific and lineage-specific alternative splicing in primates Genome Research. ,vol. 20, pp. 180- 189 ,(2010) , 10.1101/GR.099226.109