A Cubic Radial Basis Function in the MLPG Method for Beam Problems

作者: D. R. Phillips , I. S. Raju

DOI:

关键词:

摘要: A non-compactly supported cubic radial basis function implementation of the MLPG method for beam problems is presented. The evaluation derivatives shape functions obtained from interpolation much simpler than moving least squares derivatives. yields results as accurate or better those by conventional with discontinuous and other complex loading conditions.

参考文章(9)
D. R. Phillips, I. S. Raju, Further Developments in the MLPG Method for Beam Problems Cmes-computer Modeling in Engineering & Sciences. ,vol. 4, pp. 141- 160 ,(2003) , 10.3970/CMES.2003.004.141
Holger Wendland, On the smoothness of positive definite and radial functions Journal of Computational and Applied Mathematics. ,vol. 101, pp. 177- 188 ,(1999) , 10.1016/S0377-0427(98)00218-0
B. Nayroles, G. Touzot, P. Villon, Generalizing the finite element method: Diffuse approximation and diffuse elements Computational Mechanics. ,vol. 10, pp. 307- 318 ,(1992) , 10.1007/BF00364252
Ivatury Raju, Dawn Phillips, Thiagarajan Krishnamurthy, MESHLESS LOCAL PETROV-GALERKIN EULER-BERNOULLI BEAM PROBLEMS: A RADIAL BASIS FUNCTION APPROACH 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. ,(2003) , 10.2514/6.2003-1674
T. Belytschko, Y. Y. Lu, L. Gu, Element-free Galerkin methods International Journal for Numerical Methods in Engineering. ,vol. 37, pp. 229- 256 ,(1994) , 10.1002/NME.1620370205
S. N. Atluri, T. Zhu, A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics Computational Mechanics. ,vol. 22, pp. 117- 127 ,(1998) , 10.1007/S004660050346