Some remarks on proximinality in higher dual spaces

作者: T.S.S.R.K. Rao

DOI: 10.1016/J.JMAA.2006.06.026

关键词:

摘要: Abstract In this paper we consider proximinality questions for higher ordered dual spaces. We show that a finite dimensional uniformly convex space X, the C ( K , X ) is proximinal in all duals of even order. For any family Banach spaces { α } ∈ Γ co-dimensional subspace = ⊕ c 0 strongly order X.

参考文章(11)
Ka Lau, Approximation by continuous vector valued functions Studia Mathematica. ,vol. 68, pp. 291- 298 ,(1980) , 10.4064/SM-68-3-291-298
T. S. S. R. K. Rao, On the geometry of higher duals of a Banach space Illinois Journal of Mathematics. ,vol. 45, pp. 1389- 1392 ,(2001) , 10.1215/IJM/1258138074
Peter Harmand, Dirk Werner, Wend Werner, M-Ideals in Banach Spaces and Banach Algebras ,(1993)
T.S.S.R.K. Rao, On Ideals in Banach Spaces Rocky Mountain Journal of Mathematics. ,vol. 31, pp. 595- 609 ,(2001) , 10.1216/RMJM/1020171577
V. Indumathi, Proximinal subspaces of finite codimension in direct sum spaces Proceedings of the Indian Academy of Sciences - Mathematical Sciences. ,vol. 111, pp. 229- 239 ,(2001) , 10.1007/BF02829593
Ka Sing Lau, On a sufficient condition for proximity Transactions of the American Mathematical Society. ,vol. 251, pp. 343- 356 ,(1979) , 10.1090/S0002-9947-1979-0531983-0
V. Indumathi, Semi-continuity of metric projections in ℓ_{∞}-direct sums Proceedings of the American Mathematical Society. ,vol. 133, pp. 1441- 1449 ,(2005) , 10.1090/S0002-9939-04-07690-7
G. Godefroy, V. Indumathi, STRONG PROXIMINALITY AND POLYHEDRAL SPACES Revista Matematica Complutense. ,vol. 14, pp. 105- 125 ,(2001) , 10.5209/REV_REMA.2001.V14.N1.17047
R. B. Holmes, J. D. Ward, An approximative property of spaces of continuous functions Glasgow Mathematical Journal. ,vol. 15, pp. 48- 53 ,(1974) , 10.1017/S001708950000210X