Universal Meta-Learning Architecture and Algorithms

作者: Norbert Jankowski , Krzysztof Grąbczewski

DOI: 10.1007/978-3-642-20980-2_1

关键词:

摘要: There are hundreds of algorithms within data mining. Some them used to transform data, some build classifiers, others for prediction, etc. Nobody knows well all these and nobody can know the arcana their behavior in possible applications. How find best combination transformation final machine which solves given problem?

参考文章(34)
Kathleen Martin, The Learning Machines. The Arithmetic Teacher. ,vol. 29, pp. 41- 43 ,(1981) , 10.5951/AT.29.3.0041
Hilan Bensusan, Claire Kennedy, Christophe Giraud-Carrier, A higher-order approach to meta-learning ILP Work-in-progress reports. pp. 109- 117 ,(2000)
Ljupčo Todorovski, Sašo Džeroski, Combining Classifiers with Meta Decision Trees Machine Learning. ,vol. 50, pp. 223- 249 ,(2003) , 10.1023/A:1021709817809
David G. Stork, Richard O. Duda, Peter E. Hart, Pattern Classification (2nd ed.) ,(1999)
Norbert Jankowski, Krzysztof Grąbczewski, Increasing efficiency of data mining systems by machine unification and double machine cache international conference on artificial intelligence and soft computing. pp. 380- 387 ,(2010) , 10.1007/978-3-642-13208-7_48
Hilan Bensusan, Bernhard Pfahringer, Christophe G. Giraud-Carrier, Meta-Learning by Landmarking Various Learning Algorithms international conference on machine learning. pp. 743- 750 ,(2000)
Christopher M. Bishop, Neural networks for pattern recognition ,(1995)
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Philip K. Chan, Salvatore J. Stolfo, On the Accuracy of Meta-learning for Scalable Data Mining intelligent information systems. ,vol. 8, pp. 5- 28 ,(1997) , 10.1023/A:1008640732416