Integrability of coupled KdV equations

作者: Abdul-Majid Wazwaz

DOI: 10.2478/S11534-010-0084-Y

关键词:

摘要: The integrability of coupled KdV equations is examined. simplified form Hirota’s bilinear method used to achieve this goal. Multiple-soliton solutions and multiple singular soliton are formally derived for each equation. resonance phenomenon model will be

参考文章(28)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
Deng-Shan Wang, Integrability of a coupled KdV system: Painlevé property, Lax pair and Bäcklund transformation Applied Mathematics and Computation. ,vol. 216, pp. 1349- 1354 ,(2010) , 10.1016/J.AMC.2010.02.030
Anjan Biswas, None, 1-Soliton solution of the generalized Camassa–Holm Kadomtsev–Petviashvili equation Communications in Nonlinear Science and Numerical Simulation. ,vol. 14, pp. 2524- 2527 ,(2009) , 10.1016/J.CNSNS.2008.09.023
Abdul-Majid Wazwaz, MULTIPLE-SOLITON SOLUTIONS FOR THE KP EQUATION BY HIROTA’S BILINEAR METHOD AND BY THE TANH–COTH METHOD Applied Mathematics and Computation. ,vol. 190, pp. 633- 640 ,(2007) , 10.1016/J.AMC.2007.01.056
Abdul-Majid Wazwaz, Multiple kink solutions and multiple singular kink solutions for two systems of coupled Burgers-type equations Communications in Nonlinear Science and Numerical Simulation. ,vol. 14, pp. 2962- 2970 ,(2009) , 10.1016/J.CNSNS.2008.12.018
Abdul-Majid Wazwaz, Multiple-front solutions for the Burgers-Kadomtsev-Petviashvili equation Applied Mathematics and Computation. ,vol. 200, pp. 437- 443 ,(2008) , 10.1016/J.AMC.2007.11.032