Cortical Hyperexcitability in Amyotrophic Lateral Sclerosis: C9orf72 Repeats

作者: Brian J. Wainger , Merit E. Cudkowicz

DOI: 10.1001/JAMANEUROL.2015.2197

关键词:

摘要: Amyotrophiclateralsclerosis(ALS) isadevastatingdiseaseofthe motornervoussystem.Whilemost casesare sporadic, approximately5%to10%ofcasesare familial andresult frommutation in1ofmorethan25knownALS genes.Thesegenesspanasurprisingly broad range of molecular functions, including RNA metabolism, oxidative stress, axonal transport, autophagy, excitability, and immunity.Oneof thegreatmysteries in the field is thatmotorneurondiseaseresultsasaconvergentphenotypefrommutations this diverse group genes. Understanding puzzle likely keytooptimizingbothclinicaltrialsandpatienttreatmentbecause differentdrugsmayultimatelybenecessaryfortargetingspecific disease variants. Despitethemolecularheterogeneity, theclinicalmotorneuronphenotypesresultingfromthevariousgeneticmutationsand sporadic casesdifferonlymodestly. So toohasbeen thecaseon theneurophysiological level, inwhichBaeandcolleagues1have performedanimpressiveassemblyofstudiesshowingaxonaland cortical hyperexcitability ALS. Lowermotor neuron studies useaspecializednerveconductionstudyprotocolcalled threshold tracking,whichwasdevelopedbyMogyoroset al.2Changes instimulus intensitynecessarytogeneratecompoundmotoractionpotentialsofapredeterminedamplitudearemonitoredduring course a recording, andprepulses recovery cycle analysisareusedtomeasuredifferentcomponentsofaxonalexcitability.Cortical inALShasbeen repeatedly demonstrated using transcranial magnetic stimulation (TMS), bothusing traditional constant stimulus technique toelicit motor-evokedpotentials (MEPs)andbyadaptingthethresholdtracking approach to TMS. Inthis issueofJAMANeurology,Geevasingaandcolleagues3 extendedtheirobservationstoshowcorticalhyperexcitability patients with ALS due chromosome 9 open reading frame72(c9orf72)hexanucleotidegenerepeatexpansion,which themost commongenetic causeofALSand responsible for about5%ofapparentsporadicALSand40%offamilialALScases. The findings are quite similar those superoxidedismutase(SOD1)genefamilialALS,with increasedexcitabilitymanifestedmost clearlyusingpaired testing. Short intracortical inhibitionreferstotheincreaseinMEPthreshold(ordecrease inMEPamplitude) resulting fromaconditioningprepulsea few millisecondsbefore test pulse. In contrast, facilitationisthereductioninthreshold(orincreaseinMEPamplitude) whentheconditioningprepulseprecedesthetestpulsebyabout 15milliseconds.4The reduction short inhibition increase facilitationare2of themostprominentTMSfindings inALS.Otherdisease featuressharedbyboth sporadicandc9orf72 familialALS includereducedrestingmotor threshold, increased MEP amplitude, decreased silent periodduration, centralmotor conduction time. Thecorticalandaxonalexcitabilitystudieshaveshownaremarkableconsistencyof inbothpatientswithsporadic ALSandpatientswithfamilialALSand,thus,raisequestionsabout how different mechanisms converge produce changes inneuronalexcitability inALSandwhether researchers can leverage consistent neurophysiological hyperexcitabilityphenotypetoreveal informationandpotential targetsthatare broadlyrelevantacrossALSvariants.Theclinical resultssuggest anopportunitytoreexaminehyperexcitabilityusinganimalmodelsandmore-reductionistsystemstoaddressexcitabilitymechanisms.Suchworkcouldpotentially reveal specific ionchannels or cellular pathways that underlie phenotype.Thecomplexityofdifferentneuronal andnonneuronal cellularsubtypesthatgiverisetoandmodulatethedifferentTMS nerve study measurements justify additional basic exploration.However, technical considerationshave limited theuseof techniques inmice, both regard challenges inperforming tests aswell as artifacts owing sedation interpreting results. animalmodels SOD1 ALS, most have supported motor neuronactivity5;however,others, includingastudyusinginvivo recordings specificmotor pools, not.6 Inmotor neuronsmadefromALS-inducedpluripotent stemcells,hyperexcitability ispresentbut thendecreaseswith longcultureperiods, potentially because worsening neuronal health depolarization-inducedblockofmotorneuronfiring.7-9 Invitro identified roles persistent sodium currents delayed-rectifierpotassiumcurrents increasingmotorneuron excitability Futurework channelmodifiers may help elucidate channels, receptors, andmolecular scaffolding underlying clinical hyperexcitability. Webelievethebulkoftheevidencesupportshyperexcitability aprimaryprocess inALSasopposed toanadaptiveone.10 Thepresenceofsignsofhyperexcitability,suchasfasciculations, beforeotherclinicalsymptomsismoreconsistentwithaprimary roleforhyperexcitability.Similarly,thehyperexcitabilityobserved inbothprenatalSOD1motorneuronsandALSstemcell–derived motorneuronsofmultiplegeneticvariants, inwhichdecreasing improvesmotorneuronsurvival andreducesendoplasmicreticulumstressinvitro,bothsupportaprimaryupstream Author Audio Interview at jamaneurology.com

参考文章(17)
Nimeshan Geevasinga, Parvathi Menon, Garth A. Nicholson, Karl Ng, James Howells, Jillian J. Kril, Con Yiannikas, Matthew C. Kiernan, Steve Vucic, Cortical Function in Asymptomatic Carriers and Patients With C9orf72 Amyotrophic Lateral Sclerosis. JAMA Neurology. ,vol. 72, pp. 1268- 1274 ,(2015) , 10.1001/JAMANEUROL.2015.1872
John McNeish, Jason P. Gardner, Brian J. Wainger, Clifford J. Woolf, Kevin Eggan, From Dish to Bedside: Lessons Learned While Translating Findings from a Stem Cell Model of Disease to a Clinical Trial Cell Stem Cell. ,vol. 17, pp. 8- 10 ,(2015) , 10.1016/J.STEM.2015.06.013
Nicolas Delestrée, Marin Manuel, Caroline Iglesias, Sherif M. Elbasiouny, C. J. Heckman, Daniel Zytnicki, Adult Spinal Motoneurones are not Hyperexcitable in a Mouse Model of Inherited Amyotrophic Lateral Sclerosis The Journal of Physiology. ,vol. 592, pp. 1687- 1703 ,(2014) , 10.1113/JPHYSIOL.2013.265843
Kazumoto Shibuya, Sonoko Misawa, Hideki Kimura, Yu-Ichi Noto, Yasunori Sato, Yukari Sekiguchi, Yuta Iwai, Satsuki Mitsuma, Minako Beppu, Keisuke Watanabe, Yumi Fujimaki, Yukiko Tsuji, Toshio Shimizu, Toshiki Mizuno, Masanori Nakagawa, Kyoko Sawaguchi, Hideki Hanaoka, Satoshi Kuwabara, A single blind randomized controlled clinical trial of mexiletine in amyotrophic lateral sclerosis: Efficacy and safety of sodium channel blocker phase II trial. Amyotrophic Lateral Sclerosis. ,vol. 16, pp. 353- 358 ,(2015) , 10.3109/21678421.2015.1038277
Steve Vucic, Garth A. Nicholson, Matthew C. Kiernan, Cortical hyperexcitability may precede the onset of familial amyotrophic lateral sclerosis Brain. ,vol. 131, pp. 1540- 1550 ,(2008) , 10.1093/BRAIN/AWN071
Matthew Gladman, Merit Cudkowicz, Lorne Zinman, Enhancing clinical trials in neurodegenerative disorders: lessons from amyotrophic lateral sclerosis. Current Opinion in Neurology. ,vol. 25, pp. 735- 742 ,(2012) , 10.1097/WCO.0B013E32835A309D
Umer Najib, Shahid Bashir, Dylan Edwards, Alexander Rotenberg, Alvaro Pascual-Leone, Transcranial Brain Stimulation: Clinical Applications and Future Directions Neurosurgery Clinics of North America. ,vol. 22, pp. 233- 251 ,(2011) , 10.1016/J.NEC.2011.01.002
Jong Seok Bae, Neil G. Simon, Parvathi Menon, Steve Vucic, Matthew C. Kiernan, The Puzzling Case of Hyperexcitability in Amyotrophic Lateral Sclerosis Journal of Clinical Neurology. ,vol. 9, pp. 65- 74 ,(2013) , 10.3988/JCN.2013.9.2.65
Ilona Mogyoros, Matthew C Kiernan, David Burke, Hugh Bostock, Strength-duration properties of sensory and motor axons in amyotrophic lateral sclerosis Brain. ,vol. 121, pp. 851- 859 ,(1998) , 10.1093/BRAIN/121.5.851
Smita Saxena, Francesco Roselli, Katyayani Singh, Kerstin Leptien, Jean-Pierre Julien, Francois Gros-Louis, Pico Caroni, None, Neuroprotection through Excitability and mTOR Required in ALS Motoneurons to Delay Disease and Extend Survival Neuron. ,vol. 80, pp. 80- 96 ,(2013) , 10.1016/J.NEURON.2013.07.027