Corrigendum to “Mapping cones for morphisms involving a band complex in the bounded derived category of a gentle algebra” [J. Algebra 530 (2019) 163–194]

作者: İlke Çanakçı , David Pauksztello , Sibylle Schroll

DOI: 10.1016/J.JALGEBRA.2020.08.005

关键词:

摘要: Abstract In this note we correct two oversights in Canakci et al. (2019) [6] which only occur when a band complex is involved. As consequence see that the mapping cone of morphism between complexes can decompose into arbitrarily many indecomposable direct summands.

参考文章(8)
Viktor Bekkert, Héctor A. Merklen, Indecomposables in Derived Categories of Gentle Algebras Algebras and Representation Theory. ,vol. 6, pp. 285- 302 ,(2003) , 10.1023/A:1025142023594
Grzegorz Bobiński, The almost split triangles for perfect complexes over gentle algebras Journal of Pure and Applied Algebra. ,vol. 215, pp. 642- 654 ,(2011) , 10.1016/J.JPAA.2010.06.013
Igor Burban, Yuriy Drozd, Derived categories of nodal algebras Journal of Algebra. ,vol. 272, pp. 46- 94 ,(2004) , 10.1016/J.JALGEBRA.2003.07.025
Kristin Krogh Arnesen, Rosanna Laking, David Pauksztello, Morphisms between indecomposable complexes in the bounded derived category of a gentle algebra Journal of Algebra. ,vol. 467, pp. 1- 46 ,(2016) , 10.1016/J.JALGEBRA.2016.07.019
Sibylle Schroll, Pierre-Guy Plamondon, Sebastian Opper, A geometric model for the derived category of gentle algebras arXiv: Representation Theory. ,(2018)
İlke Çanakçı, David Pauksztello, Sibylle Schroll, Mapping cones in the bounded derived category of a gentle algebra Journal of Algebra. ,vol. 530, pp. 163- 194 ,(2019) , 10.1016/J.JALGEBRA.2019.04.005
Yankı Lekili, Alexander Polishchuk, Derived equivalences of gentle algebras via Fukaya categories Mathematische Annalen. ,vol. 376, pp. 187- 225 ,(2020) , 10.1007/S00208-019-01894-5
Ilke Çanakçı, David Pauksztello, Sibylle Schroll, None, On Extensions for Gentle Algebras Canadian Journal of Mathematics. ,vol. 73, pp. 249- 292 ,(2021) , 10.4153/S0008414X2000005X