Sparse linear regression for optimizing design parameters of double T-shaped monopole antennas

作者: Yashika Sharma , Junqiang Wu , Hao Xin , Hao Helen Zhang

DOI: 10.1109/APUSNCURSINRSM.2017.8072216

关键词:

摘要: In this paper we propose using sparse linear regression for antenna design optimization. The new method provides an automatic, efficient, and reliable framework to identify optimal parameters a reference dual band double T-shaped monopole in order achieve the best performance terms of fractional bandwidth its two bands.

参考文章(5)
Min Liang, Wei-Ren Ng, Kihun Chang, Kokou Gbele, Michael E. Gehm, Hao Xin, A 3-D Luneburg Lens Antenna Fabricated by Polymer Jetting Rapid Prototyping IEEE Transactions on Antennas and Propagation. ,vol. 62, pp. 1799- 1807 ,(2014) , 10.1109/TAP.2013.2297165
Qi-Jun Zhang, K.C. Gupta, V.K. Devabhaktuni, Artificial neural networks for RF and microwave design - from theory to practice IEEE Transactions on Microwave Theory and Techniques. ,vol. 51, pp. 1339- 1350 ,(2003) , 10.1109/TMTT.2003.809179
Yen-Liang Kuo, Kin-Lu Wong, Printed double-T monopole antenna for 2.4/5.2 GHz dual-band WLAN operations IEEE Transactions on Antennas and Propagation. ,vol. 51, pp. 2187- 2192 ,(2003) , 10.1109/TAP.2003.816391
Robert Tibshirani, Regression Shrinkage and Selection Via the Lasso Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 58, pp. 267- 288 ,(1996) , 10.1111/J.2517-6161.1996.TB02080.X
Yang Tian, Nan Li, Hong Wang, Xiu Ping Li, Kok Yan Lee, Right-Angled Microcoaxial Bends for Si-Based RF/Microwave Integrated Circuits IEEE Transactions on Components, Packaging and Manufacturing Technology. ,vol. 6, pp. 290- 297 ,(2016) , 10.1109/TCPMT.2015.2513066