A “reduce and solve” approach for the multiple-choice multidimensional knapsack problem

作者: Yuning Chen , Jin-Kao Hao

DOI: 10.1016/J.EJOR.2014.05.025

关键词:

摘要: Abstract The multiple-choice multidimensional knapsack problem (MMKP) is a well-known NP-hard combinatorial optimization with number of important applications. In this paper, we present “reduce and solve” heuristic approach which combines reduction techniques an Integer Linear Programming (ILP) solver (CPLEX). key ingredient the proposed set group fixing variable rules. These rules rely mainly on information from linear relaxation given aim to generate reduced critical subproblem be solved by ILP solver. Additional strategies are used explore space problems. Extensive experimental studies over two sets 37 MMKP benchmark instances in literature show that our competes favorably most recent state-of-the-art algorithms. particular, for 27 conventional benchmarks, finds improved best lower bound 11 as by-product improves all previous upper bounds. For 10 additional irregular structures, method 7 known results.

参考文章(27)
Fred Glover, Adaptive Memory Projection Methods for Integer Programming Springer, Boston, MA. pp. 425- 440 ,(2005) , 10.1007/0-387-23667-8_19
Md. Mostofa Akbar, Kin F. Li, Eric G. Manning, Shahadat Khan, Solving the Knapsack Problem for Adaptive Multimedia Systems. Studia Informatica Universalis. ,vol. 2, pp. 157- 178 ,(2002)
Jin-Kao Hao, Michel Vasquez, A Hybrid Approach for the 01 Multidimensional Knapsack problem. international joint conference on artificial intelligence. pp. 328- 333 ,(2001)
Shahrear Iqbal, Md. Faizul Bari, M. Sohel Rahman, Solving the multi-dimensional multi-choice Knapsack problem with the help of ants international conference on swarm intelligence. pp. 312- 323 ,(2010) , 10.1007/978-3-642-15461-4_27
Dusan P.Jokanovic, Norio Shiratori, Martin Moser, An Algorithm for the Multidimensional Multiple-Choice Knapsack Problem IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 80, pp. 582- 589 ,(1997)
Abdelkader Sbihi, A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem Journal of Combinatorial Optimization. ,vol. 13, pp. 337- 351 ,(2007) , 10.1007/S10878-006-9035-3
Raïd Mansi, Cláudio Alves, J. M. Valério de Carvalho, Saïd Hanafi, A hybrid heuristic for the multiple choice multidimensional knapsack problem Engineering Optimization. ,vol. 45, pp. 983- 1004 ,(2013) , 10.1080/0305215X.2012.717072
Chuda Basnet, John Wilson, Heuristics for determining the number of warehouses for storing non-compatible products International Transactions in Operational Research. ,vol. 12, pp. 527- 538 ,(2005) , 10.1111/J.1475-3995.2005.00523.X
Yang Wang, Zhipeng Lü, Fred Glover, Jin-Kao Hao, Backbone guided tabu search for solving the UBQP problem Journal of Heuristics. ,vol. 19, pp. 679- 695 ,(2013) , 10.1007/S10732-011-9164-4
Sylvain Boussier, Michel Vasquez, Yannick Vimont, Saïd Hanafi, Philippe Michelon, A multi-level search strategy for the 0-1 Multidimensional Knapsack Problem Discrete Applied Mathematics. ,vol. 158, pp. 97- 109 ,(2010) , 10.1016/J.DAM.2009.08.007