Algebraic solution of the Hubbard model on the infinite interval

作者: Frank Göhmann , Shuichi Murakami

DOI: 10.1016/S0550-3213(97)00793-1

关键词:

摘要: Abstract We develop the quantum inverse scattering method for one-dimensional Hubbard model on infinite line at zero density. This enables us to diagonalize Hamiltonian algebraically. The eigenstates can be classified as states of particles, bound pairs particles and pairs. obtain corresponding creation annihilation operators calculate S -matrix. is invariant under Yangian group Y(su(2)). show that n -particle transform like -fold tensor products fundamental representations Y(su(2) ) are singlet.

参考文章(67)
Chen Ning Yang, η pairing and off-diagonal long-range order in a Hubbard model Physical Review Letters. ,vol. 63, pp. 2144- 2147 ,(1989) , 10.1103/PHYSREVLETT.63.2144
Tetsuji Miwa, Michio Jimbo, Algebraic Analysis of Solvable Lattice Models. ,(1994)
Cisar Gómez, Martm Ruiz-Altaba, German Sierra, Quantum groups in two-dimensional physics qgtd. pp. 475- ,(1996) , 10.1017/CBO9780511628825
Ludwig D. Faddeev, Leon A. Takhtajan, Hamiltonian methods in the theory of solitons ,(1987)
Vyjayanthi Chari, A guide to quantum groups ,(1994)
Fabian H. L. Eβler, Vladimir E. Korepin, Scattering matrix and excitation spectrum of the Hubbard model. Physical Review Letters. ,vol. 72, pp. 908- 911 ,(1994) , 10.1103/PHYSREVLETT.72.908
Alexios P. Polychronakos, Exchange operator formalism for integrable systems of particles Physical Review Letters. ,vol. 69, pp. 703- 705 ,(1992) , 10.1103/PHYSREVLETT.69.703