Quantum deformations of certain simple modules over enveloping algebras

作者: G Lusztig

DOI: 10.1016/0001-8708(88)90056-4

关键词:

摘要: Soit F un corps. 0 sous-corps de F. U l'algebre enveloppante universelle sur Lie Kac-Moody correspondant a la matrice A d'entiers. On montre qu'un module integrable poids le plus eleve V admet une deformation quantique

参考文章(7)
V. G. Drinfeld, Hopf algebra and Yang-Baxter equation Soviet Math. Dokl.. ,vol. 32, pp. 254- 258 ,(1985)
Robert Steinberg, John Faulkner, Robert Wilson, Lectures on Chevalley Groups University Lecture Series. ,vol. 66, ,(2016) , 10.1090/ULECT/066
V. G. DRINFEL'D, Hopf algebras and the quantum Yang-Baxter equation Proceedings of the USSR Academy of Sciences. ,vol. 32, pp. 254- 258 ,(1985) , 10.1142/9789812798336_0013
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
P. P. Kulish, N. Yu. Reshetikhin, Quantum linear problem for the sine-Gordon equation and higher representations Journal of Mathematical Sciences. ,vol. 23, pp. 2435- 2441 ,(1983) , 10.1007/BF01084171
Michio Jimbo, A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation Letters in Mathematical Physics. ,vol. 11, pp. 247- 252 ,(1986) , 10.1007/BF00400222
Michio Jimbo, A q -difference analogue of U(g) and the Yang-Baxter equation Letters in Mathematical Physics. ,vol. 10, pp. 63- 69 ,(1985) , 10.1007/BF00704588