Smallest singular value of random matrices and geometry of random polytopes

作者: A.E. Litvak , A. Pajor , M. Rudelson , N. Tomczak-Jaegermann

DOI: 10.1016/J.AIM.2004.08.004

关键词:

摘要: We study the behaviour of the smallest singular value of a rectangular random matrix, ie, matrix whose entries are independent random variables satisfying some additional conditions. …

参考文章(29)
Giannopoulos, Hartzoulaki, Random Spaces Generated by Vertices of the Cube Discrete and Computational Geometry. ,vol. 28, pp. 255- 273 ,(2002) , 10.1007/S00454-002-2779-3
Uffe Haagerup, The best constants in the Khintchine inequality Studia Mathematica. ,vol. 70, pp. 231- 283 ,(1981) , 10.4064/SM-70-3-231-283
Kenneth R. Davidson, Stanislaw J. Szarek, Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces Handbook of the Geometry of Banach Spaces. ,vol. 1, pp. 317- 366 ,(2001) , 10.1016/S1874-5849(01)80010-3
Alan Edelman, Eigenvalues and condition numbers of random matrices SIAM Journal on Matrix Analysis and Applications. ,vol. 9, pp. 543- 560 ,(1988) , 10.1137/0609045
Stanislaw J. Szarek, The finite dimensional basis problem with an appendix on nets of Grassmann manifolds Acta Mathematica. ,vol. 151, pp. 153- 179 ,(1983) , 10.1007/BF02393205
Daniel W. Stroock, Probability Theory, an Analytic View ,(1993)
Z. D. Bai, Y. Q. Yin, Limit of the smallest eigenvalue of a large dimensional sample covariance matrix Annals of Probability. ,vol. 21, pp. 1275- 1294 ,(1993) , 10.1214/AOP/1176989118