HaraliCU: GPU-Powered Haralick Feature Extraction on Medical Images Exploiting the Full Dynamics of Gray-Scale Levels

作者: Leonardo Rundo , Andrea Tangherloni , Simone Galimberti , Paolo Cazzaniga , Ramona Woitek

DOI: 10.1007/978-3-030-25636-4_24

关键词:

摘要: Image texture extraction and analysis are fundamental steps in Computer Vision. In particular, considering the biomedical field, quantitative imaging methods increasingly gaining importance since they convey scientifically clinically relevant information for prediction, prognosis, treatment response assessment. this context, radiomic approaches fostering large-scale studies that can have a significant impact clinical practice. work, we focus on Haralick features, most common descriptors. These features based Gray-Level Co-occurrence Matrix (GLCM), whose computation is considerably intensive images characterized by high bit-depth (e.g., 16 bits), as case of medical detailed visual information. We propose here HaraliCU, an efficient strategy GLCM exhaustive set features. HaraliCU was conceived to exploit parallel capabilities modern Graphics Processing Units (GPUs), allowing us achieve up \(\sim \!20\times \) speed-up with respect corresponding C++ coded sequential version. Our GPU-powered solution highlights promising GPUs research.

参考文章(40)
Stefania Rizzo, Francesca Botta, Sara Raimondi, Daniela Origgi, Valentina Buscarino, Anna Colarieti, Federica Tomao, Giovanni Aletti, Vanna Zanagnolo, Maria Del Grande, Nicoletta Colombo, Massimo Bellomi, Radiomics of high-grade serous ovarian cancer: association between quantitative CT features, residual tumour and disease progression within 12 months. European Radiology. ,vol. 28, pp. 4849- 4859 ,(2018) , 10.1007/S00330-018-5389-Z
Muhammad Shafiq-ul-Hassan, Kujtim Latifi, Geoffrey Zhang, Ghanim Ullah, Robert Gillies, Eduardo Moros, Voxel size and gray level normalization of CT radiomic features in lung cancer. Scientific Reports. ,vol. 8, pp. 10545- 10545 ,(2018) , 10.1038/S41598-018-28895-9
Leonardo Rundo, Andrea Tangherloni, Marco S. Nobile, Carmelo Militello, Daniela Besozzi, Giancarlo Mauri, Paolo Cazzaniga, MedGA: A novel evolutionary method for image enhancement in medical imaging systems Expert Systems With Applications. ,vol. 119, pp. 387- 399 ,(2019) , 10.1016/J.ESWA.2018.11.013
Markus Gipp, Guillermo Marcus, Nathalie Harder, Apichat Suratanee, Karl Rohr, Rainer König, Reinhard Männer, Haralick’s Texture Features Computation Accelerated by GPUs for Biological Applications HPSC. pp. 127- 137 ,(2012) , 10.1007/978-3-642-25707-0_11
Carmelo Militello, Leonardo Rundo, Salvatore Vitabile, Giorgio Russo, Pietro Pisciotta, Francesco Marletta, Massimo Ippolito, Corrado D'arrigo, Massimo Midiri, Maria Carla Gilardi, Gamma Knife treatment planning: MR brain tumor segmentation and volume measurement based on unsupervised Fuzzy C-Means clustering International Journal of Imaging Systems and Technology. ,vol. 25, pp. 213- 225 ,(2015) , 10.1002/IMA.22139
S Arivazhagan, L Ganesan, Texture classification using wavelet transform Pattern Recognition Letters. ,vol. 24, pp. 1513- 1521 ,(2003) , 10.1016/S0167-8655(02)00390-2
Andrés Ortiz, JM Górriz, Javier Ramírez, Diego Salas-Gonzalez, José M Llamas-Elvira, None, Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies soft computing. ,vol. 13, pp. 2668- 2682 ,(2013) , 10.1016/J.ASOC.2012.11.020
Mary M. Galloway, Texture analysis using gray level run lengths Computer Graphics and Image Processing. ,vol. 4, pp. 172- 179 ,(1975) , 10.1016/S0146-664X(75)80008-6
H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, A. G. Law, L. Mansinha, J. R. Mitchell, A new local multiscale Fourier analysis for medical imaging Medical Physics. ,vol. 30, pp. 1134- 1141 ,(2003) , 10.1118/1.1576931
GUILLAUME THIBAULT, BERNARD FERTIL, CLAIRE NAVARRO, SANDRINE PEREIRA, PIERRE CAU, NICOLAS LEVY, JEAN SEQUEIRA, JEAN-LUC MARI, Shape and texture indexes application to cell nuclei classification International Journal of Pattern Recognition and Artificial Intelligence. ,vol. 27, pp. 1357002- ,(2013) , 10.1142/S0218001413570024