Multi-Fluid Transport Modeling of NSTX Upgrade Standard and Snowflake Divertor Configurations

作者: E. T. Meier , V. A. Soukhanovskii , S. Gerhardt , J. E. Menard , T. D. Rognlien

DOI: 10.1002/CTPP.201410055

关键词:

摘要: In NSTX Upgrade (NSTX-U), power exhaust is expected to challenge available material and heat removal technologies, which are limited ∼10 MW/m2. Preliminary analysis of flux mitigation strategies, including the snowflake divertor configuration radiative operation, performed with multi-fluid edge transport code, UEDGE. Divertor recycling between 95% 99%, 7 9 MW explored. Compared standard divertor, particular studied here strongly reduces outer target flux, but tends have higher (>10 MW/m2) inner flux. This suggests that optimization should be pursued in future work. Both neon argon impurity seeding scenarios mitigate high fluxes both configurations, can cause collapse core plasma at only 3% concentration. cryopumping also considered, modeling shows ∼50% more particle divertor. (© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

参考文章(18)
D.N. Hill and the DIII-D Team, None, DIII-D research towards resolving key issues for ITER and steady-state tokamaks Nuclear Fusion. ,vol. 53, pp. 104001- ,(2013) , 10.1088/0029-5515/53/10/104001
D D Ryutov, R H Cohen, T D Rognlien, M V Umansky, A snowflake divertor: a possible solution to the power exhaust problem for tokamaks Plasma Physics and Controlled Fusion. ,vol. 54, pp. 124050- ,(2012) , 10.1088/0741-3335/54/12/124050
T. Eich, B. Sieglin, A. Scarabosio, W. Fundamenski, R. J. Goldston, A. Herrmann, , Inter-ELM Power Decay Length for JET and ASDEX Upgrade: Measurement and Comparison with Heuristic Drift-Based Model Physical Review Letters. ,vol. 107, pp. 215001- ,(2011) , 10.1103/PHYSREVLETT.107.215001
T.D. Rognlien, M.E. Rensink, Edge-plasma models and characteristics for magnetic fusion energy devices Fusion Engineering and Design. ,vol. 60, pp. 497- 514 ,(2002) , 10.1016/S0920-3796(02)00005-4
M.V. Umansky, T.D. Rognlien, D.D. Ryutov, P.B. Snyder, Edge Plasma in Snowflake Divertor Contributions to Plasma Physics. ,vol. 50, pp. 350- 355 ,(2010) , 10.1002/CTPP.201010057
D. D. Ryutov, Geometrical properties of a “snowflake” divertor Physics of Plasmas. ,vol. 14, pp. 064502- ,(2007) , 10.1063/1.2738399
J.M. Canik, R. Maingi, V.A. Soukhanovskii, R.E. Bell, H.W. Kugel, B.P. LeBlanc, T.H. Osborne, Measurements and 2-D Modeling of Recycling and Edge Transport in Discharges with Lithium-coated PFCs in NSTX Journal of Nuclear Materials. ,vol. 415, ,(2011) , 10.1016/J.JNUCMAT.2010.11.084
J.E. Menard, L. Bromberg, T. Brown, T. Burgess, D. Dix, L. El-Guebaly, T. Gerrity, R.J. Goldston, R.J. Hawryluk, R. Kastner, C. Kessel, S. Malang, J. Minervini, G.H. Neilson, C.L. Neumeyer, S. Prager, M. Sawan, J. Sheffield, A. Sternlieb, L. Waganer, D. Whyte, M. Zarnstorff, Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator Nuclear Fusion. ,vol. 51, pp. 103014- ,(2011) , 10.1088/0029-5515/51/10/103014
D D Ryutov, M A Makowski, M V Umansky, Local properties of the magnetic field in a snowflake divertor Plasma Physics and Controlled Fusion. ,vol. 52, pp. 105001- ,(2010) , 10.1088/0741-3335/52/10/105001