NEW SEQUENTIAL LAGRANGE MULTIPLIER CONDITIONS CHARACTERIZING OPTIMALITY WITHOUT CONSTRAINT QUALIFICATION FOR CONVEX PROGRAMS

作者: V. Jeyakumar , G. M. Lee , N. Dinh

DOI: 10.1137/S1052623402417699

关键词:

摘要: … characterizing optimality without a constraint qualification for an abstract nonsmooth convex program is … For a smooth convex program, the sequential condition yields a limiting Kuhn–…

参考文章(13)
M. A López-Cerda, M. A Goberna, Linear Semi-Infinite Optimization ,(1998)
V. Jeyakumar, Asymptotic Dual Conditions Characterizing Optimality for Infinite Convex Programs Journal of Optimization Theory and Applications. ,vol. 93, pp. 153- 165 ,(1997) , 10.1023/A:1022606002804
J. M. Borwein, H. Wolkowicz, Characterizations of optimality without constraint qualification for the abstract convex program Optimality and Stability in Mathematical Programming. pp. 77- 100 ,(1982) , 10.1007/BFB0120983
Frank H. Clarke, Optimization and nonsmooth analysis ,(1983)
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
Lionel Thibault, Sequential Convex Subdifferential Calculus and Sequential Lagrange Multipliers Siam Journal on Control and Optimization. ,vol. 35, pp. 1434- 1444 ,(1997) , 10.1137/S0363012995287714
Jon M Borwein, None, Characterization of optimality for the abstract convex program with finite dimensional range Journal of The Australian Mathematical Society. ,vol. 30, pp. 390- 411 ,(1981) , 10.1017/S1446788700017882
V. Jeyakumar, A.M. Rubinov, B.M. Glover, Y. Ishizuka, Inequality systems and global optimization Journal of Mathematical Analysis and Applications. ,vol. 202, pp. 900- 919 ,(1996) , 10.1006/JMAA.1996.0353
V. Jeyakumar, Henry Wolkowicz, Generalizations of Slater's constraint qualification for infinite convex programs Mathematical Programming. ,vol. 57, pp. 85- 101 ,(1992) , 10.1007/BF01581074