Stability analysis of the method of seminormal equations for linear least squares problems

作者: Å. Björck

DOI: 10.1016/0024-3795(87)90101-7

关键词:

摘要: Abstract Consider the linear least squares problem minx‖Ax−b‖2. When A is large and sparse, then often only R-factor in QR factorization of known.The solution x can be computed from seminormal equations RTRx = ATb. For this method error shown to same order as for normal equations. We show that by adding a correction step using single precision we get which under mild conditions accurate method. The application updating sparse when appending column discussed.

参考文章(18)
Michael Alan Saunders, Large-scale linear programming using the Cholesky factorization. Stanford University. ,(1972)
G. H. Golub, J. H. Wilkinson, Note on the iterative refinement of least squares solution Numerische Mathematik. ,vol. 9, pp. 139- 148 ,(1966) , 10.1007/BF02166032
Charles Van Loan, On the Method of Weighting for Equality Constrained Least Squares Problems SIAM Journal on Numerical Analysis. ,vol. 22, pp. 851- 864 ,(1984) , 10.1137/0722051
Åke Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization Bit Numerical Mathematics. ,vol. 7, pp. 1- 21 ,(1967) , 10.1007/BF01934122
I. S. DUFF, J. K. REID, A Comparison of Some Methods for the Solution of Sparse Overdetermined Systems of Linear Equations Ima Journal of Applied Mathematics. ,vol. 17, pp. 267- 280 ,(1976) , 10.1093/IMAMAT/17.3.267
J. H. Wilkinson, The algebraic eigenvalue problem ,(1965)
C. C. Paige, An error analysis of a method for solving matrix equations Mathematics of Computation. ,vol. 27, pp. 355- 359 ,(1973) , 10.1090/S0025-5718-1973-0331745-1
G. Golub, Numerical methods for solving linear least squares problems Numerische Mathematik. ,vol. 7, pp. 206- 216 ,(1965) , 10.1007/BF01436075
Åke Björck, Iterative refinement of linear least squares solutions II Bit Numerical Mathematics. ,vol. 8, pp. 8- 30 ,(1967) , 10.1007/BF01939974
M. Al-Baali, R. Fletcher, Variational Methods for Non-Linear Least-Squares Journal of the Operational Research Society. ,vol. 36, pp. 405- 421 ,(1985) , 10.1057/JORS.1985.68