Estimation of signal subspace on hyperspectral data

作者: José M. Bioucas-Dias , José M. P. Nascimento

DOI: 10.1117/12.620061

关键词:

摘要: Dimensionality reduction plays a crucial role in many hyperspectral data processing and analysis algorithms. This paper proposes new mean squared error based approach to determine the signal subspace imagery. The method first estimates noise correlations matrices, then it selects subset of eigenvalues that best represents least square sense. effectiveness proposed is illustrated using simulated real images.

参考文章(20)
Steve Sutley, Roger N. Clark, Andrea Gallagher, Fred Kruse, Gregg Swayze, Ground-truthing AVIRIS mineral mapping at Cuprite, Nevada ,(1992)
Roger N. Clark, Gregg A. Swayze, Andrea J. Gallagher, Trude V.V. King, Wendy M. Calvin, The U. S. Geological Survey, Digital Spectral Library: Version 1 (0.2 to 3.0um) Open-File Report. ,(1993) , 10.3133/OFR93592
A. F. H. Goetz, V. Srivastava, Mineralogical Mapping in the Cuprite Mining District, Nevada aisd. pp. 22- 31 ,(1985)
Bruce Hapke, Theory of reflectance and emittance spectroscopy Topics in Remote Sensing. ,(1993) , 10.1017/CBO9780511524998
R. E. ROGER, J. F. ARNOLD, Reliably estimating the noise in AVIRIS hyperspectral images International Journal of Remote Sensing. ,vol. 17, pp. 1951- 1962 ,(1996) , 10.1080/01431169608948750
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
Marc Lennon, Gregoire Mercier, Marie-Catherine Mouchot, Laurence Hubert-Moy, Curvilinear component analysis for nonlinear dimensionality reduction of hyperspectral images Image and signal processing for remote sensing. Conference. ,vol. 4541, pp. 157- 168 ,(2002) , 10.1117/12.454150
Fred A. Kruse, Joseph W. Boardman, Jonathan F. Huntington, Comparison of airborne and satellite hyperspectral data for geologic mapping Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. ,vol. 4725, pp. 128- 139 ,(2002) , 10.1117/12.478743