Manhattan rule training for memristive crossbar circuit pattern classifiers

作者: Elham Zamanidoost , Farnood M. Bayat , Dmitri Strukov , Irina Kataeva

DOI: 10.1109/WISP.2015.7139171

关键词:

摘要: … The most challenging operation in batch training is calculation and storing of temporal weight increments which must be performed for each weight of the array. If the network does not …

参考文章(20)
M. Prezioso, F. Merrikh-Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, D. B. Strukov, Training and operation of an integrated neuromorphic network based on metal-oxide memristors Nature. ,vol. 521, pp. 61- 64 ,(2015) , 10.1038/NATURE14441
F. Merrikh Bayat, B. Hoskins, D. B. Strukov, Phenomenological modeling of memristive devices Applied Physics A. ,vol. 118, pp. 779- 786 ,(2015) , 10.1007/S00339-015-8993-7
Chris Yakopcic, Tarek M. Taha, Energy efficient perceptron pattern recognition using segmented memristor crossbar arrays international joint conference on neural network. pp. 1- 8 ,(2013) , 10.1109/IJCNN.2013.6707073
Junjie Lu, Steven Young, Itamar Arel, Jeremy Holleman, 30.10 A 1TOPS/W analog deep machine-learning engine with floating-gate storage in 0.13μm CMOS international solid-state circuits conference. ,vol. 50, pp. 270- 281 ,(2014) , 10.1109/JSSC.2014.2356197
Yongtae Kim, Yong Zhang, Peng Li, A digital neuromorphic VLSI architecture with memristor crossbar synaptic array for machine learning symposium on cloud computing. pp. 328- 333 ,(2012) , 10.1109/SOCC.2012.6398336
Djaafar Chabi, Damien Querlioz, Weisheng Zhao, Jacques-Olivier Klein, Robust learning approach for neuro-inspired nanoscale crossbar architecture ACM Journal on Emerging Technologies in Computing Systems. ,vol. 10, pp. 5- ,(2014) , 10.1145/2539123
Jung Hoon Lee, Konstantin K. Likharev, Defect-tolerant nanoelectronic pattern classifiers International Journal of Circuit Theory and Applications. ,vol. 35, pp. 239- 264 ,(2007) , 10.1002/CTA.410
Clement Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, Yann LeCun, NeuFlow: A runtime reconfigurable dataflow processor for vision computer vision and pattern recognition. pp. 109- 116 ,(2011) , 10.1109/CVPRW.2011.5981829