A simple noise-reduction method for real data

作者: Thomas Schreiber , Peter Grassberger

DOI: 10.1016/0375-9601(91)90237-3

关键词:

摘要: … sional phase space with delay and “advance” … (h) Result obtained from the same Schut not in the noise reduction scheme, Thus our … amount of noise reduction we achieved with our …

参考文章(15)
Eric J. Kostelich, James A. Yorke, Noise reduction in dynamical systems Physical Review A. ,vol. 38, pp. 1649- 1652 ,(1988) , 10.1103/PHYSREVA.38.1649
Stephen M. Hammel, A noise reduction method for chaotic systems Physics Letters A. ,vol. 148, pp. 421- 428 ,(1990) , 10.1016/0375-9601(90)90493-8
Stephan M. Hammel, James A. Yorke, Celso Grebogi, Numerical orbits of chaotic processes represent true orbits Bulletin of the American Mathematical Society. ,vol. 19, pp. 465- 469 ,(1988) , 10.1090/S0273-0979-1988-15701-1
W Liebert, K Pawelzik, H. G Schuster, Optimal Embeddings of Chaotic Attractors from Topological Considerations EPL. ,vol. 14, pp. 521- 526 ,(1991) , 10.1209/0295-5075/14/6/004
Th Buzug, T Reimers, G Pfister, Optimal Reconstruction of Strange Attractors from Purely Geometrical Arguments EPL. ,vol. 13, pp. 605- 610 ,(1990) , 10.1209/0295-5075/13/7/006
R. Badii, G. Broggi, B. Derighetti, M. Ravani, S. Ciliberto, A. Politi, M. A. Rubio, Dimension increase in filtered chaotic signals. Physical Review Letters. ,vol. 60, pp. 979- 982 ,(1988) , 10.1103/PHYSREVLETT.60.979
Peter Grassberger, An optimized box-assisted algorithm for fractal dimensions Physics Letters A. ,vol. 148, pp. 63- 68 ,(1990) , 10.1016/0375-9601(90)90577-B
W. Liebert, H.G. Schuster, Proper choice of the time delay for the analysis of chaotic time series Physics Letters A. ,vol. 142, pp. 107- 111 ,(1989) , 10.1016/0375-9601(89)90169-2
Andrew M. Fraser, Harry L. Swinney, Independent coordinates for strange attractors from mutual information Physical Review A. ,vol. 33, pp. 1134- 1140 ,(1986) , 10.1103/PHYSREVA.33.1134
Peter Grassberger, Itamar Procaccia, Estimation of the Kolmogorov entropy from a chaotic signal Physical Review A. ,vol. 28, pp. 2591- 2593 ,(1983) , 10.1103/PHYSREVA.28.2591