The generalized order complementarity problem

作者: G. Isac , M. Kostreva

DOI: 10.1007/BF00941401

关键词:

摘要: Given an ordered Banach Space (E,K) andm functionsf 1,f 2,...,f m:E→E, the generalized order complementarity problem associated with {f i} andK is to findx 0∈K such thatf i(x 0)∈K,i=1,...,m, and Λ (x 0,f 1(x 0),...,f m(x 0))=0. The shown be equivalent several fixed-point problems studied by Borwein Dempster Isac. Existence uniqueness of solutions least-element theory are in spacesC(Ω, ℝ) andL p(Ω, μ). For general locally convex spaces, derived, existence proved, algorithm for computing a solution presented. Applications mixed lubrication fluid mechanics described.

参考文章(9)
Anthony L. Peressini, Ordered topological vector spaces Harper & Row. ,(1967)
J. M. Borwein, M. A. H. Dempster, The linear order complementarity problem Mathematics of Operations Research. ,vol. 14, pp. 534- 558 ,(1989) , 10.1287/MOOR.14.3.534
Kong Ping Oh, The Formulation of the Mixed Lubrication Problem as a Generalized Nonlinear Complementarity Problem Journal of Tribology-transactions of The Asme. ,vol. 108, pp. 598- 603 ,(1986) , 10.1115/1.3261274
Richard W. Cottle, George B. Dantzig, A generalization of the linear complementarity problem Journal of Combinatorial Theory. ,vol. 8, pp. 79- 90 ,(1970) , 10.1016/S0021-9800(70)80010-2
Alfred Tarski, A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS Pacific Journal of Mathematics. ,vol. 5, pp. 285- 309 ,(1955) , 10.2140/PJM.1955.5.285
Michael M. Kostreva, Elasto‐hydrodynamic lubrication: A non‐linear complementarity problem International Journal for Numerical Methods in Fluids. ,vol. 4, pp. 377- 397 ,(1984) , 10.1002/FLD.1650040407
Takao Fujimoto, Nonlinear Complementarity Problems in a Function Space SIAM Journal on Control and Optimization. ,vol. 18, pp. 621- 623 ,(1980) , 10.1137/0318046