Explicit formulas for OPUC and POPUC associated with measures which are simple modifications of the Lebesgue measure

作者: Cleonice F Bracciali , Jairo S Silva , A Sri Ranga , None

DOI: 10.1016/J.AMC.2015.09.067

关键词:

摘要: We consider nontrivial probability measures, obtained as simple modifications of the Lebesgue measure, which include mass points at z = 1 and i . The orthogonal polynomials, para-orthogonal polynomials Toeplitz matrices associated with these measures are presented.

参考文章(12)
L. Moral, María José Cantero Medina, Luis Velázquez Campoy, Measures and para orthogonal polynomials on the unit circle East Journal on Approximations. ,vol. 8, pp. 447- 464 ,(2002)
C.F. Bracciali, A. Sri Ranga, A. Swaminathan, Para-orthogonal polynomials on the unit circle satisfying three term recurrence formulas Applied Numerical Mathematics. ,vol. 109, pp. 19- 40 ,(2016) , 10.1016/J.APNUM.2016.05.008
Manwah Lilian Wong, First and second kind paraorthogonal polynomials and their zeros Journal of Approximation Theory. ,vol. 146, pp. 282- 293 ,(2007) , 10.1016/J.JAT.2006.12.007
M.S. Costa, H.M. Felix, A. Sri Ranga, Orthogonal polynomials on the unit circle and chain sequences Journal of Approximation Theory. ,vol. 173, pp. 14- 32 ,(2013) , 10.1016/J.JAT.2013.04.009
K. Castillo, M.S. Costa, A. Sri Ranga, D.O. Veronese, Full length article: A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula Journal of Approximation Theory. ,vol. 184, pp. 146- 162 ,(2014) , 10.1016/J.JAT.2014.05.007
Leonid Golinski, Quadrature formula and zeros of para-orthogonal polynomials on the unit circle Acta Mathematica Hungarica. ,vol. 96, pp. 169- 186 ,(2002) , 10.1023/A:1019765002077
Barry Simon, Orthogonal polynomials on the unit circle. Part 1 American Mathematical Society. ,(2005)
D. H. Griffel, Theodore S. Chihara, An Introduction to Orthogonal Polynomials The Mathematical Gazette. ,vol. 63, pp. 222- ,(1979) , 10.2307/3617920
Barry Simon, Orthogonal polynomials on the unit circle. Part 2 American Mathematical Society. ,(2005)