Artificial neural networks to predict daylight illuminance in office buildings

作者: Tuğçe Kazanasmaz , Murat Günaydin , Selcen Binol

DOI: 10.1016/J.BUILDENV.2008.11.012

关键词:

摘要: A prediction model was developed to determine daylight illuminance for the office buildings by using artificial neural networks (ANNs). Illuminance data were collected for 3 months by …

参考文章(27)
O. Aschehoug, J. Christoffersen, E. Lee, S. Selkowitz, J.-L. Scartezzini, S. Aydinli, M. Klinger, N. Ruck, I. Edmonds, R. Jakobiak, G. Courret, L. Michel, M. Kischkoweit-Lopin, Daylight in Buildings - A source book on daylighting systems and components Lawrence Berkeley National Laboratory, Berkeley (USA). ,(2000)
K. Steemers, Nick V. Baker, A. Fanchiotti, Daylighting in Architecture: A European Reference Book ,(1993)
Paul Littlefair, Daylight prediction in atrium buildings Solar Energy. ,vol. 73, pp. 105- 109 ,(2002) , 10.1016/S0038-092X(02)00038-5
Danny H.W. Li, Gary H.W. Cheung, Chris C.S. Lau, A simplified procedure for determining indoor daylight illuminance using daylight coefficient concept Building and Environment. ,vol. 41, pp. 578- 589 ,(2006) , 10.1016/J.BUILDENV.2005.02.027
Danny H.W. Li, Ernest K.W. Tsang, An analysis of measured and simulated daylight illuminance and lighting savings in a daylit corridor Building and Environment. ,vol. 40, pp. 973- 982 ,(2005) , 10.1016/J.BUILDENV.2004.09.007
R.P. Leslie, Capturing the daylight dividend in buildings: why and how? Building and Environment. ,vol. 38, pp. 381- 385 ,(2003) , 10.1016/S0360-1323(02)00118-X
Christoph Reinhart, Annegret Fitz, None, Findings from a survey on the current use of daylight simulations in building design Energy and Buildings. ,vol. 38, pp. 824- 835 ,(2006) , 10.1016/J.ENBUILD.2006.03.012