Solitons and discrete eigenfunctions of the recursion operator of non-linear evolution equations. I: The Caudrey-Dodd-Gibbon-Sawada-Kotera equation

作者: R N Aiyer , B Fuchssteiner , W Oevel

DOI: 10.1088/0305-4470/19/18/022

关键词:

摘要: The solution of the third-order isospectral equation Caudrey-Dodd-Gibbon-Sawada-Kotera (CDGSKE) for soliton potential is obtained recursively from Riccati derived by iterating once auto-Backlund transformation. It then shown that discrete eigenfunctions sixth-order recursion operator this can be written in terms solutions equation. behaviour 1-soliton which has certain novel features studied. A sine-Gordon-like resembling double-sine-Gordon CDGSKE.

参考文章(14)
Junkichi Satsuma, David J. Kaup, A Bäcklund Transformation for a Higher Order Korteweg-De Vries Equation Journal of the Physical Society of Japan. ,vol. 43, pp. 692- 697 ,(1977) , 10.1143/JPSJ.43.692
A.S. Fokas, B. Fuchssteiner, The hierarchy of the Benjamin-Ono equation Physics Letters A. ,vol. 86, pp. 341- 345 ,(1981) , 10.1016/0375-9601(81)90551-X
Allan P. Fordy, John Gibbons, Some remarkable nonlinear transformations Physics Letters A. ,vol. 75, pp. 325- 325 ,(1980) , 10.1016/0375-9601(80)90829-4
K. Sawada, T. Kotera, A Method for Finding N-Soliton Solutions of the K.d.V. Equation and K.d.V.-Like Equation Progress of Theoretical Physics. ,vol. 51, pp. 1355- 1367 ,(1974) , 10.1143/PTP.51.1355
Benno Fuchssteiner, Application of hereditary symmetries to nonlinear evolution equations Nonlinear Analysis-theory Methods & Applications. ,vol. 3, pp. 849- 862 ,(1979) , 10.1016/0362-546X(79)90052-X
B. Fuchssteiner, The Lie Algebra Structure of Degenerate Hamiltonian and Bi-Hamiltonian Systems Progress of Theoretical Physics. ,vol. 68, pp. 1082- 1104 ,(1982) , 10.1143/PTP.68.1082
A.S. Fokas, B. Fuchssteiner, Bäcklund transformations for hereditary symmetries Nonlinear Analysis-theory Methods & Applications. ,vol. 5, pp. 423- 432 ,(1981) , 10.1016/0362-546X(81)90025-0