A digital workflow for learning the reduced-order structure-property linkages for permeability of porous membranes

作者: Yuksel C. Yabansu , Patrick Altschuh , Johannes Hötzer , Michael Selzer , Britta Nestler

DOI: 10.1016/J.ACTAMAT.2020.06.003

关键词:

摘要: Abstract Quantitative relationships between the complex porous structure of a membrane (henceforth simply referred to as microstructure) and its effective permeability are critical for improving performance membranes used in filtration separation applications. This paper presents digital workflow learning structure-permeability linkages membranes. The presented establishes desired by bringing together recent advances (i) generators three-dimensional representative volume elements (3-D RVEs) reflecting large diverse set structures, (ii) numerical approaches reliable evaluation 3D-RVEs, (iii) low dimensional representation material internal using framework 2-point spatial correlations principal component analyses, (iv) Gaussian process (GP) regression with input-dependent noise (i.e., heteroscedasticity). It is seen that this study can systematically identify salient features 3-D microstructure train reduced-order heteroscedastic GP models on data generated physics-based simulations. will be shown structure-property able make high fidelity predictions assessment uncertainties new structures at minimal computational cost.

参考文章(71)
Scott D. Kimmins, Neil R. Cameron, Functional Porous Polymers by Emulsion Templating: Recent Advances Advanced Functional Materials. ,vol. 21, pp. 211- 225 ,(2011) , 10.1002/ADFM.201001330
William Feller, On the Kolmogorov–Smirnov Limit Theorems for Empirical Distributions Annals of Mathematical Statistics. ,vol. 19, pp. 735- 749 ,(1948) , 10.1007/978-3-319-16859-3_38
Shanshan Yang, Mingchao Liang, Boming Yu, Mingqing Zou, Permeability model for fractal porous media with rough surfaces Microfluidics and Nanofluidics. ,vol. 18, pp. 1085- 1093 ,(2015) , 10.1007/S10404-014-1500-1
Mathias Ulbricht, Advanced functional polymer membranes Polymer. ,vol. 47, pp. 2217- 2262 ,(2006) , 10.1016/J.POLYMER.2006.01.084
Kristian Kersting, Christian Plagemann, Patrick Pfaff, Wolfram Burgard, Most likely heteroscedastic Gaussian process regression international conference on machine learning. pp. 393- 400 ,(2007) , 10.1145/1273496.1273546
Christian Jungreuthmayer, Petra Steppert, Gerhard Sekot, Armin Zankel, Herbert Reingruber, Jürgen Zanghellini, Alois Jungbauer, None, The 3D pore structure and fluid dynamics simulation of macroporous monoliths: High permeability due to alternating channel width. Journal of Chromatography A. ,vol. 1425, pp. 141- 149 ,(2015) , 10.1016/J.CHROMA.2015.11.026
Gema Martínez-Criado, Julie Villanova, Rémi Tucoulou, Damien Salomon, Jussi-Petteri Suuronen, Sylvain Labouré, Cyril Guilloud, Valentin Valls, Raymond Barrett, Eric Gagliardini, Yves Dabin, Robert Baker, Sylvain Bohic, Cédric Cohen, John Morse, ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis Journal of Synchrotron Radiation. ,vol. 23, pp. 344- 352 ,(2016) , 10.1107/S1600577515019839