Collective Computation of Many-Body Properties by Neural Networks

作者: J. W. Clark , S. Gazula , K. A. Gernoth , J. Hasenbein , J. S. Prater

DOI: 10.1007/978-1-4615-3466-2_24

关键词:

摘要: Artificial neural networks constitute a novel class of many-body systems in which the particles are neuron-like units and interactions weighted synapse-like connections between these units.1,2 The most extraordinary feature is that subject to modification, depending on states recently visited by system. Thus, as network experiences varied stimuli, knowledge can be stored neuron-neuron interactions, for later retrieval some information-processing task. Indeed, multilayered, feedforward analog neurons taught example solve complex pat tern-categorization problems using backpropagation learning algorithm3 or other procedures modifying connection weights. During process, inner may evolve into useful detectors tailored regularities correlations inherent ensemble input stimulus patterns desired output response used training. system builds an internal representation, model, its pattern environment, provide good approximation actual rules determining underlying input-output map. Accordingly, artificial possess generalization predictive ability, demonstrated high percentage correct responses when presented with unfamiliar absent from training set.

参考文章(24)
P. Vashishta, R.F. Bishop, Rajiv K. Kalia, Condensed Matter Theories: Volume 2 ,(1988)
John W. Clark, Srinivas Gazula, Artificial Neural Networks that Learn Many-Body Physics Springer, Boston, MA. pp. 1- 24 ,(1991) , 10.1007/978-1-4615-3686-4_1
A. Polls, V. C. Aguilera-Navarro, Rajiv K. Kalia, Gerd Röpke, M. Casas, A. N. Proto, Virulh Sa-yakanit, Jorge Luis Aliaga, R. F. Bishop, Manuel de Llano, F. B. Malik, M. J. Manninen, P. Vashishta, Lesser Blum, Jaime Keller, J. Navarro, S. Rosati, Heidi Reinholz, Jouko S. Arponen, M.de Llano, S. Fantoni, Condensed Matter Theories ,(1988)
Berndt Müller, Joachim Reinhardt, Neural Networks: An Introduction ,(2014)
David E. Rumelhart, James L. McClelland, , Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations Computational Models of Cognition and Perception. ,(1986) , 10.7551/MITPRESS/5236.001.0001
S. Gazula, J.W. Clark, H. Bohr, Learning and prediction of nuclear stability by neural networks Nuclear Physics. ,vol. 540, pp. 1- 26 ,(1992) , 10.1016/0375-9474(92)90191-L
Peter E. Haustein, An overview of the 1986–1987 atomic mass predictions Atomic Data and Nuclear Data Tables. ,vol. 39, pp. 185- 200 ,(1988) , 10.1016/0092-640X(88)90019-8
J W Clark, Neural network modelling. Physics in Medicine and Biology. ,vol. 36, pp. 1259- 1317 ,(1991) , 10.1088/0031-9155/36/10/001
Henrik Bohr, Jakob Bohr, Søren Brunak, Rodney M.J. Cotterill, Benny Lautrup, Leif Nørskov, Ole H. Olsen, Steffen B. Petersen, Protein secondary structure and homology by neural networks The α-helices in rhodopsin FEBS Letters. ,vol. 241, pp. 223- 228 ,(1988) , 10.1016/0014-5793(88)81066-4
P.J. Masson, J. Jänecke, Masses from an inhomogeneous partial difference equation with higher-order isospin contributions Atomic Data and Nuclear Data Tables. ,vol. 39, pp. 273- 280 ,(1988) , 10.1016/0092-640X(88)90029-0