Determining Intrinsic Dimension and Entropy of High-Dimensional Shape Spaces

作者: Jose A. Costa , Alfred O. Hero

DOI: 10.1007/0-8176-4481-4_9

关键词:

摘要: Given a finite set of random samples from smooth Riemannian manifold embedded in ℝd, two important questions are: what is the intrinsic dimension and entropy underlying sampling distribution on manifold? These naturally arise study shape spaces generated by images or signals for purposes classification, compression, reconstruction. This chapter concerned with simple estimators based lengths geodesic minimal spanning tree (GMST) k-nearest neighbor (k-NN) graph. We provide proofs strong consistency these under weak assumptions compactness boundedness Lebesgue density supported manifold. illustrate MNIST database handwritten digits.

参考文章(22)
J.A. Costa, A.O. Hero, Entropic graphs for manifold learning asilomar conference on signals, systems and computers. ,vol. 1, pp. 316- 320 ,(2003) , 10.1109/ACSSC.2003.1291928
Richard C. Dubes, Anil K. Jain, Algorithms for clustering data ,(1988)
Herbert Edelsbrunner, Michael Facello, Jie Liang, On the definition and the construction of pockets in macromolecules Discrete Applied Mathematics. ,vol. 88, pp. 83- 102 ,(1998) , 10.1016/S0166-218X(98)00067-5
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
Mathew D. Penrose, A Strong Law for the Largest Nearest-Neighbour Link between Random Points Journal of the London Mathematical Society. ,vol. 60, pp. 951- 960 ,(1999) , 10.1112/S0024610799008157
Huzefa Neemuchwala, Alfred Hero, Paul Carson, Image matching using alpha-entropy measures and entropic graphs Signal Processing. ,vol. 85, pp. 277- 296 ,(2005) , 10.1106/J.SIGPRO.2004.10.002
Mathew D. Penrose, J. E. Yukich, Weak laws of large numbers in geometric probability Annals of Applied Probability. ,vol. 13, pp. 277- 303 ,(2003) , 10.1214/AOAP/1042765669