Euler characteristic of quiver Grassmannians and Ringel-Hall algebras of string algebras

作者: Nicolas Poettering

DOI:

关键词:

摘要: We compute the Euler characteristics of quiver Grassmannians and flag varieties tree band modules prove their positivity. This generalizes some results by G.C. Irelli [arXiv:0910.2592]. As an application we consider Ringel-Hall algebra $C(A)$ string algebras $A$ in combinatorial terms products arbitrary functions $C(A)$.

参考文章(15)
Dominic Joyce, Configurations in abelian categories. II. Ringel–Hall algebras Advances in Mathematics. ,vol. 210, pp. 635- 706 ,(2007) , 10.1016/J.AIM.2006.07.006
Philippe Caldero, Bernhard Keller, From triangulated categories to cluster algebras Inventiones Mathematicae. ,vol. 172, pp. 169- 211 ,(2008) , 10.1007/S00222-008-0111-4
Henning Krause, Maps between tree and band modules Journal of Algebra. ,vol. 137, pp. 186- 194 ,(1991) , 10.1016/0021-8693(91)90088-P
G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras Journal of the American Mathematical Society. ,vol. 4, pp. 365- 421 ,(1991) , 10.1090/S0894-0347-1991-1088333-2
C. Riedtmann, Lie Algebras Generated by Indecomposables Journal of Algebra. ,vol. 170, pp. 526- 546 ,(1994) , 10.1006/JABR.1994.1351
P CALDERO, B KELLER, From triangulated categories to cluster algebras II Annales Scientifiques De L Ecole Normale Superieure. ,vol. 39, pp. 983- 1009 ,(2006) , 10.1016/J.ANSENS.2006.09.003
Sergey Fomin, Andrei Zelevinsky, Cluster algebras II: Finite type classification Inventiones Mathematicae. ,vol. 154, pp. 63- 121 ,(2003) , 10.1007/S00222-003-0302-Y
Aidan Schofield, General Representations of Quivers Proceedings of the London Mathematical Society. ,vol. s3-65, pp. 46- 64 ,(1992) , 10.1112/PLMS/S3-65.1.46
M. Kapranov, E. Vasserot, Kleinian singularities, derived categories and Hall algebras Mathematische Annalen. ,vol. 316, pp. 565- 576 ,(2000) , 10.1007/S002080050344