Dispersion relations and wave operators in self-similar quasicontinuous linear chains.

作者: T. M. Michelitsch , G. A. Maugin , F. C. G. A. Nicolleau , A. F. Nowakowski , S. Derogar

DOI: 10.1103/PHYSREVE.80.011135

关键词:

摘要: We construct self-similar functions and linear operators to deduce a variant of the Laplacian operator D'Alembertian wave operator. The exigence self-similarity as symmetry property requires introduction nonlocal particle-particle interactions. derive describing dynamics quasicontinuous chain infinite length with spatially distribution interparticle springs. harmonic interactions results in dispersion relation form Weierstrass-Mandelbrot function that exhibits fractal features. also continuum approximation, which relates fractional integrals, yields low-frequency regime power-law frequency-dependence oscillator density.

参考文章(17)
Hari M Srivastava, Anatoly A Kilbas, Juan J Trujillo, Theory and Applications of Fractional Differential Equations ,(2006)
A.N. Bondarenko, V.A. Levin, Self similar spectrum of fractal lattice Proceedings. The 9th Russian-Korean International Symposium on Science and Technology, 2005. KORUS 2005.. pp. 33- 35 ,(2005) , 10.1109/KORUS.2005.1507637
Martin Ostoja-Starzewski, Towards thermomechanics of fractal media Zeitschrift für Angewandte Mathematik und Physik. ,vol. 58, pp. 1085- 1096 ,(2007) , 10.1007/S00033-007-7027-5
Benoit B. Mandelbrot, The Fractal Geometry of Nature ,(1982)
Kunal Ghosh, Ronald Fuchs, Critical behavior in the dielectric properties of random self-similar composites. Physical Review B. ,vol. 44, pp. 7330- 7343 ,(1991) , 10.1103/PHYSREVB.44.7330
ROBERT G. HOHLFELD, NATHAN COHEN, SELF-SIMILARITY AND THE GEOMETRIC REQUIREMENTS FOR FREQUENCY INDEPENDENCE IN ANTENNAE Fractals. ,vol. 07, pp. 79- 84 ,(1999) , 10.1142/S0218348X99000098
Vasily E Tarasov, Chains with the fractal dispersion law Journal of Physics A. ,vol. 41, pp. 035101- ,(2008) , 10.1088/1751-8113/41/3/035101
Jun Kigami, A harmonic calculus on the Sierpinski spaces Japan Journal of Applied Mathematics. ,vol. 6, pp. 259- 290 ,(1989) , 10.1007/BF03167882
Vasily E Tarasov, Chains with Fractal Dispersion Law arXiv: Mathematical Physics. ,(2008) , 10.1088/1751-8113/41/3/035101