Perturbed billiard systems II. Bernoulli properties

作者: Izumi Kubo , Hiroshi Murata

DOI: 10.1017/S0027763000019127

关键词:

摘要: One of the authors has shown the ergodicity of the perturbed billiard system which can describe the motion of a particle in a potential field of a special type [5], [6]. Since then, some development has been made, and we are now able to show the Bernoulli property of the system in this article. We hope, the result gives a new progress in statistical mechanics. Our method of the proof is inspired by the idea of D. S. Ornstein and B. Weiss [9], which has been used by G. Gallavotti and D. S. Ornstein [3] for a Sinai billiard system.

参考文章(8)
D. S. Ornstein, Imbedding Bernoulli shifts in flows Springer Berlin Heidelberg. pp. 178- 218 ,(1970) , 10.1007/BFB0060654
N.A. Friedman, D.S. Ornstein, On isomorphism of weak Bernoulli transformations Advances in Mathematics. ,vol. 5, pp. 365- 394 ,(1970) , 10.1016/0001-8708(70)90010-1
S. Ito, H. Murata, H. Totoki, Remarks on the isomorphism theorems for weak Bernoulli transformations in general case Publications of the Research Institute for Mathematical Sciences. ,vol. 7, pp. 541- 580 ,(1971) , 10.2977/PRIMS/1195193398
Donald Ornstein, Benjamin Weiss, Geodesic flows are Bernoullian Israel Journal of Mathematics. ,vol. 14, pp. 184- 198 ,(1973) , 10.1007/BF02762673
Donald Ornstein, Two Bernoulli shifts with infinite entropy are isomorphic Advances in Mathematics. ,vol. 5, pp. 339- 348 ,(1970) , 10.1016/0001-8708(70)90008-3
Yakov G Sinai, Dynamical systems with elastic reflections Russian Mathematical Surveys. ,vol. 25, pp. 137- 189 ,(1970) , 10.1070/RM1970V025N02ABEH003794
Giovanni Gallavotti, Donald S. Ornstein, Billiards and Bernoulli schemes Communications in Mathematical Physics. ,vol. 38, pp. 83- 101 ,(1974) , 10.1007/BF01651505