The prediction of atomic kinetic energies from coordinates of surrounding atoms using kriging machine learning

作者: Timothy L. Fletcher , Shaun M. Kandathil , Paul L. A. Popelier

DOI: 10.1007/S00214-014-1499-0

关键词:

摘要: … In other words, there was no need to use the atomic virial theorem anymore, and atomic energies could now be calculated for any molecular configuration (not confined to stationary …

参考文章(45)
Paul L. A. Popelier, Atoms in Molecules. An Introduction Harlow, Great Britain: Pearson Education; 2000.. ,(2000)
Paul Lode Albert Popelier, The QTAIM Perspective of Chemical Bonding The Chemical Bond. pp. 271- 308 ,(2014) , 10.1002/9783527664696.CH8
F Richard, R Bader, Atoms in molecules : a quantum theory Clarendon Press. ,(1990)
Michel Rafat, Paul L. A. Popelier, Topological Atom–Atom Partitioning of Molecular Exchange Energy and its Multipolar Convergence In: Quantum Theory of Atoms in Molecules. Weinheim, Germany: Wiley-VCH; 2007. p. 121-140.. pp. 121- 140 ,(2007) , 10.1002/9783527610709.CH5
Christopher K I Williams, Carl Edward Rasmussen, Gaussian Processes for Machine Learning ,(2005)
Laurent Joubert, Paul L. A. Popelier, The prediction of energies and geometries of hydrogen bonded DNA base-pairs via a topological electrostatic potential Physical Chemistry Chemical Physics. ,vol. 4, pp. 4353- 4359 ,(2002) , 10.1039/B204485D
Paul L. A. Popelier, Steven Y. Liem, Properties and 3D Structure of Liquid Water: A Perspective from a High-Rank Multipolar Electrostatic Potential Journal of Chemical Theory and Computation. ,vol. 4, pp. 353- 365 ,(2008) , 10.1021/CT700266N
Eunji Sim, Joe Larkin, Kieron Burke, Charles W. Bock, Testing the kinetic energy functional: Kinetic energy density as a density functional Journal of Chemical Physics. ,vol. 118, pp. 8140- 8148 ,(2003) , 10.1063/1.1565316