ACO for Continuous and Mixed-Variable Optimization

作者: Krzysztof Socha

DOI: 10.1007/978-3-540-28646-2_3

关键词:

摘要: This paper presents how the Ant Colony Optimization (ACO) metaheuristic can be extended to continuous search domains and applied both mixed discrete-continuous optimization problems. The describes general underlying idea, enumerates some possible design choices, a first implementation, provides preliminary results obtained on well-known benchmark proposed method is compared other ant, as well non-ant methods for optimization.

参考文章(19)
Stefan Voß, Silvano Martello, Ibrahim H Osman, Catherine Roucairol, None, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization ,(2012)
Anikó Ekárt, Mario Giacobini, Anna Isabel Esparcia-Alcázar, Stefano Cagnoni, Anthony Brabazon, Muddassar Farooq, Penousal Machado, Gianni A. di Caro, Andreas Fink, Applications of Evolutionary Computing ,(2008)
David Corne, Pablo Moscato, Riccardo Poli, Dipankar Dasgupta, Fred Glover, Kenneth V. Price, Marco Dorigo, New Ideas In Optimization ,(1999)
Bo Yuan, M. Gallagher, Playing in continuous spaces: some analysis and extension of population-based incremental learning congress on evolutionary computation. ,vol. 1, pp. 443- 450 ,(2003) , 10.1109/CEC.2003.1299609
R. Chelouah, P. Siarry, A Continuous Genetic Algorithm Designed for the Global Optimization of Multimodal Functions Journal of Heuristics. ,vol. 6, pp. 191- 213 ,(2000) , 10.1023/A:1009626110229
Gianni Di Caro, Marco Dorigo, The ant colony optimization meta-heuristic New ideas in optimization. pp. 11- 32 ,(1999)
Thomas Stützle, Holger H. Hoos, – Ant System Future Generation Computer Systems. ,vol. 16, pp. 889- 914 ,(2000) , 10.1016/S0167-739X(00)00043-1