Basic theory of fractional Mei symmetrical perturbation and its applications

作者: Shao-Kai Luo , Ming-Jing Yang , Xiao-Tian Zhang , Yun Dai

DOI: 10.1007/S00707-017-2040-Z

关键词:

摘要: In this paper, we present a new method of fractional dynamics, i.e., the Mei symmetrical perturbation disturbed system, and explore adiabatic invariant directly led by perturbation. For dynamical system which is small forces perturbation, generalized Hamiltonian equation investigated and, under more general kind infinitesimal transformation Lie group, definition determining are given; then, obtained. particular, it found that, using method, can find non-Noether As special cases, obtain conservation law undisturbed theorem integer system. Also, as method’s applications, invariants Duffing oscillator Lotka biochemical oscillator. This work constructs basic theoretical framework provides dynamics.

参考文章(66)
Emmy Noether, Invariant Variational Problems Springer, New York, NY. pp. 3- 22 ,(2011) , 10.1007/978-0-387-87868-3_1
WuHuibin, MeiFengxiang, FORM INVARIANCE AND LIE SYMMETRY OF THE GENERALIZED HAMILTONIAN SYSTEM 固体力学学报:英文版. ,vol. 17, pp. 370- 373 ,(2004)
Shao-Kai Luo, Jin-Man He, Yan-Li Xu, A new method of dynamical stability, i.e. fractional generalized Hamiltonian method, and its applications Applied Mathematics and Computation. ,vol. 269, pp. 77- 86 ,(2015) , 10.1016/J.AMC.2015.07.047
Yan-Li Xu, Shao-Kai Luo, None, Fractional Nambu dynamics Acta Mechanica. ,vol. 226, pp. 3781- 3793 ,(2015) , 10.1007/S00707-015-1432-1
Ali Hasan Nayfeh, Balakumar Balachandran, Applied nonlinear dynamics : analytical, computational, and experimental methods Wiley series in nonlinear science. ,(1995)
Małgorzata Klimek, Lagrangean and Hamiltonian fractional sequential mechanics Czechoslovak Journal of Physics. ,vol. 52, pp. 1247- 1253 ,(2002) , 10.1023/A:1021389004982
Jiang Wen-An, Luo Shao-Kai, Mei symmetry leading to Mei conserved quantity of generalized Hamiltonian system ,vol. 60, pp. 60201- 060201 ,(2011)
Shao-Kai Luo, Jin-Man He, Yan-Li Xu, Fractional Birkhoffian method for equilibrium stability of dynamical systems International Journal of Non-Linear Mechanics. ,vol. 78, pp. 105- 111 ,(2016) , 10.1016/J.IJNONLINMEC.2015.09.020
Dumitru Baleanu, Juan I Trujillo, None, A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives Communications in Nonlinear Science and Numerical Simulation. ,vol. 15, pp. 1111- 1115 ,(2010) , 10.1016/J.CNSNS.2009.05.023