On a probabilistic interpretation of shape derivatives of Dirichlet groundstates with application to Fermion nodes.

作者: Mathias Rousset

DOI: 10.1051/M2AN/2010049

关键词:

摘要: This paper considers Schrodinger operators, and presents a probabilistic interpretation of the variation (or shape derivative) Dirichlet groundstate energy when associated domain is perturbed. relies on distribution boundary stopped random process with Feynman-Kac weights. Practical computations require in addition explicit approximation normal derivative boundary. We then propose to use this formulation case so-called fixed node Fermion groundstates, defined by bottom eigenelements operator Fermionic system conditions nodes (the set zeros) an initially guessed skew-symmetric function. show that derivatives vanishes if only either (i) symmetric; or (ii) are exactly zeros eigenfunction operator. can be computed Monte-Carlo algorithm, which referred as Nodal (NMC). The latter also holds.

参考文章(31)
Claudia Filippi, C. J. Umrigar, Correlated sampling in quantum Monte Carlo: A route to forces Physical Review B. ,vol. 61, ,(2000) , 10.1103/PHYSREVB.61.R16291
A. Badinski, R. J. Needs, Total forces in the diffusion Monte Carlo method with nonlocal pseudopotentials Physical Review B. ,vol. 78, pp. 035134- ,(2008) , 10.1103/PHYSREVB.78.035134
Mathias Rousset, On the Control of an Interacting Particle Estimation of Schrödinger Ground States Siam Journal on Mathematical Analysis. ,vol. 38, pp. 824- 844 ,(2006) , 10.1137/050640667
C. J. Umrigar, Julien Toulouse, Optimization of quantum Monte Carlo wave functions by energy minimization Journal of Chemical Physics. ,vol. 126, pp. 084102- 084102 ,(2007) , 10.1063/1.2437215
D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a stochastic method Physical Review Letters. ,vol. 45, pp. 566- 569 ,(1980) , 10.1103/PHYSREVLETT.45.566
Eric Cances, Benjamin Jourdain, Tony Lelievre, QUANTUM MONTE CARLO SIMULATIONS OF FERMIONS: A MATHEMATICAL ANALYSIS OF THE FIXED-NODE APPROXIMATION Mathematical Models and Methods in Applied Sciences. ,vol. 16, pp. 1403- 1440 ,(2006) , 10.1142/S0218202506001583
Roland Assaraf, Michel Caffarel, Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces Journal of Chemical Physics. ,vol. 119, pp. 10536- 10552 ,(2003) , 10.1063/1.1621615
D. Ceperley, G. V. Chester, M. H. Kalos, Monte Carlo simulation of a many-fermion study Physical Review B. ,vol. 16, pp. 3081- 3099 ,(1977) , 10.1103/PHYSREVB.16.3081
Mosé Casalegno, Massimo Mella, Andrew M. Rappe, Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization The Journal of Chemical Physics. ,vol. 118, pp. 7193- 7201 ,(2003) , 10.1063/1.1562605
Huang Hongxin, Shubin Liu, An improved algorithm of fixed-node quantum Monte Carlo method with self-optimization process Journal of Molecular Structure-theochem. ,vol. 726, pp. 93- 97 ,(2005) , 10.1016/J.THEOCHEM.2005.02.077