Geometric quantization of localized surface plasmons

作者: Ory Schnitzer

DOI:

关键词:

摘要: We consider the quasi-static problem governing localized surface plasmon modes and permittivity eigenvalues $\epsilon$ of smooth, arbitrarily shaped, axisymmetric inclusions. develop an asymptotic theory for dense part spectrum, i.e., close to accumulation value $\epsilon=-1$ at which a flat interface supports plasmons; in this regime, field oscillates rapidly along decays exponentially away from it on comparable scale. With $\tau=-(\epsilon+1)$ as small parameter, we surface-ray description eigenfunctions narrow boundary layer about interface; fast phase variation, well slowly varying amplitude geometric phase, rays are determined functions local geometry. focus most moderately azimuthal direction, case meridian arcs that two poles. Asymptotically matching diverging ray solutions with expansions valid inner regions vicinities poles yields quantization rule $$\frac{1}{\tau} \sim \frac{\pi n }{\Theta}+\frac{1}{2}\left(\frac{\pi}{\Theta}-1\right)+o(1),$$ where $n\gg1$ is integer $\Theta$ parameter given by product inclusion length reciprocal average its cross-sectional radius symmetry axis. For sphere, $\Theta=\pi$, whereby formula returns exact $\epsilon_n=-1-1/n$. also demonstrate good agreement prolate spheroids.

参考文章(48)
Joseph B Keller, S.I Rubinow, Asymptotic solution of eigenvalue problems Annals of Physics. ,vol. 9, pp. 24- 75 ,(1960) , 10.1016/0003-4916(60)90061-0
Yu Luo, A. I. Fernandez-Dominguez, Aeneas Wiener, Stefan A. Maier, J. B. Pendry, Surface plasmons and nonlocality: a simple model. Physical Review Letters. ,vol. 111, pp. 093901- ,(2013) , 10.1103/PHYSREVLETT.111.093901
Karl-Mikael Perfekt, Mihai Putinar, Spectral bounds for the Neumann-Poincaré operator on planar domains with corners Journal D Analyse Mathematique. ,vol. 124, pp. 39- 57 ,(2014) , 10.1007/S11854-014-0026-5
Ivan A. Larkin, Mark I. Stockman, Imperfect perfect lens. Nano Letters. ,vol. 5, pp. 339- 343 ,(2005) , 10.1021/NL047957A
Daniel Grieser, Hannes Uecker, Svend-Age Biehs, Oliver Huth, Felix Rüting, Martin Holthaus, Perturbation theory for plasmonic eigenvalues Physical Review B. ,vol. 80, pp. 245405- ,(2009) , 10.1103/PHYSREVB.80.245405
Feng Ouyang, Michael Isaacson, Surface plasmon excitation of objects with arbitrary shape and dielectric constant Philosophical Magazine Part B. ,vol. 60, pp. 481- 492 ,(1989) , 10.1080/13642818908205921
Joseph B. Keller, Corrected bohr-sommerfeld quantum conditions for nonseparable systems Annals of Physics. ,vol. 4, pp. 180- 188 ,(1958) , 10.1016/0003-4916(58)90032-0
Boris Luk'yanchuk, Nikolay I. Zheludev, Stefan A. Maier, Naomi J. Halas, Peter Nordlander, Harald Giessen, Chong Tow Chong, The Fano resonance in plasmonic nanostructures and metamaterials Nature Materials. ,vol. 9, pp. 707- 715 ,(2010) , 10.1038/NMAT2810