A probabilistic approach to protein backbone tracing in electron density maps

作者: F. DiMaio , J. Shavlik , G. N. Phillips

DOI: 10.1093/BIOINFORMATICS/BTL252

关键词:

摘要: One particularly time-consuming step in protein crystallography is interpreting the electron density map; that is, fitting a complete molecular model of into 3D image produced by crystallographic process. In poor-quality maps, interpretation may require significant amount crystallographer's time. Our work investigates automating initial backbone trace maps. We describe ACMI (Automatic Crystallographic Map Interpreter), which uses probabilistic known as Markov field to represent protein. Residues are modeled nodes graph, while edges pairwise structural interactions. Modeling this manner allows be flexible, considering an almost infinite number possible conformations, rejecting any physically impossible. Using efficient algorithm for approximate inference—belief propagation—allows most probable protein's through map determined. test on set ten maps (at 2.5 4.0 Å resolution), and compare our results alternative approaches. At these resolutions, offers more accurate than current Contact: dimaio@cs.wisc.edu

参考文章(18)
Yair Weiss, Kevin P. Murphy, Michael I. Jordan, Loopy belief propagation for approximate inference: an empirical study uncertainty in artificial intelligence. pp. 467- 475 ,(1999)
L. Leherte, J. Glasgow, K. Baxter, E. Steeg, S. Fortier, Analysis of three-dimensional protein images Journal of Artificial Intelligence Research. ,vol. 7, pp. 125- 159 ,(1997) , 10.1613/JAIR.425
Thomas R Ioerger, James C Sacchettini, TEXTAL system: artificial intelligence techniques for automated protein model building. Methods in Enzymology. ,vol. 374, pp. 244- 270 ,(2003) , 10.1016/S0076-6879(03)74012-9
Helen M Berman, John D Westbrook, The Impact of Structural Genomics on the Protein Data Bank American Journal of Pharmacogenomics. ,vol. 4, pp. 247- 252 ,(2004) , 10.2165/00129785-200404040-00004
K. Cowtan, Modified phased translation functions and their application to molecular-fragment location. Acta Crystallographica Section D-biological Crystallography. ,vol. 54, pp. 750- 756 ,(1998) , 10.1107/S0907444997016247
Thomas C. Terwilliger, Automated side-chain model building and sequence assignment by template matching. Acta Crystallographica Section D-biological Crystallography. ,vol. 59, pp. 45- 49 ,(2003) , 10.1107/S0907444902018048
Alexander D. MacKerell, Joanna Wiorkiewicz-Kuczera, Martin Karplus, An all-atom empirical energy function for the simulation of nucleic acids Journal of the American Chemical Society. ,vol. 117, pp. 11946- 11975 ,(1995) , 10.1021/JA00153A017
David T. Jones, William R. Taylor, Janet M. Thornton, The rapid generation of mutation data matrices from protein sequences Bioinformatics. ,vol. 8, pp. 275- 282 ,(1992) , 10.1093/BIOINFORMATICS/8.3.275
Stuart Geman, Donald Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-6, pp. 721- 741 ,(1984) , 10.1109/TPAMI.1984.4767596
A. Perrakis, T. K. Sixma, K. S. Wilson, V. S. Lamzin, wARP: improvement and extension of crystallographic phases by weighted averaging of multiple-refined dummy atomic models. Acta Crystallographica Section D-biological Crystallography. ,vol. 53, pp. 448- 455 ,(1997) , 10.1107/S0907444997005696