An Elementary Model of Dynamical Tunneling

作者: J. Asch , P. Duclos

DOI: 10.1016/S0076-5392(08)62367-X

关键词:

摘要: Abstract In the scattering of a quantum particle by potential V(x) := (1 + x 2 ) -1 , we derive bounds on amplitudes for energies E greater than top bump. The are form cte exp –ħ s ( k ′), where s(k, k′ is classical action relevant instanton energy shell = . method designed to suit as much possible n -dimensional case but applied here only 1.

参考文章(5)
Jenn‐Tai Hwang, Philip Pechukas, The adiabatic theorem in the complex plane and the semiclassical calculation of nonadiabatic transition amplitudes The Journal of Chemical Physics. ,vol. 67, pp. 4640- 4653 ,(1977) , 10.1063/1.434630
Ph. Briet, J. M. Combes, P. Duclos, Spectral stability under tunneling Communications in Mathematical Physics. ,vol. 126, pp. 133- 156 ,(1989) , 10.1007/BF02124334
André Martinez, Estimates on Complex Interactions in Phase Space Mathematische Nachrichten. ,vol. 167, pp. 203- 254 ,(2006) , 10.1002/MANA.19941670109
A Joye, H Kunz, Ch.-Ed Pfister, Exponential decay and geometric aspect of transition probabilities in the adiabatic limit Annals of Physics. ,vol. 208, pp. 299- 332 ,(1991) , 10.1016/0003-4916(91)90297-L