Evolutionary Optimization: Pitfalls and Booby Traps

作者: Thomas Weise , Raymond Chiong , Ke Tang

DOI: 10.1007/S11390-012-1274-4

关键词:

摘要: Evolutionary computation (EC), a collective name for a range of metaheuristic black-box optimization algorithms, is one of the fastest-growing areas in computer science. Many …

参考文章(291)
David E. Goldberg, Kalyanmoy Deb, Jeffrey Horn, Massive Multimodality, Deception, and Genetic Algorithms. parallel problem solving from nature. ,vol. 2, pp. 37- 46 ,(1992)
Pablo Moscato, Carlos Cotta, A Gentle Introduction to Memetic Algorithms Handbook of Metaheuristics. pp. 105- 144 ,(2003) , 10.1007/0-306-48056-5_5
William Michael Rudnick, Genetic algorithms and fitness variance with an application to the automated design of artificial neural networks Oregon Graduate Institute of Science & Technology. ,(1992)
David E. Goldberg, Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis. Complex Systems. ,vol. 3, ,(1989)
Diana Holstein, Pablo Moscato, Memetic algorithms using guided local search: a case study New ideas in optimization. pp. 235- 244 ,(1999)
Karsten Weicker, Nicole Weicker, Burden and Benefits of Redundancy foundations of genetic algorithms. pp. 313- 333 ,(2001) , 10.1016/B978-155860734-7/50100-1
Phil Husbands, Frank Mill, Simulated Co-Evolution as the Mechanism for Emergent Planning and Scheduling. ICGA. pp. 264- 270 ,(1991)
Haipeng Guo, William H. Hsu, GA-hardness revisited genetic and evolutionary computation conference. pp. 1584- 1585 ,(2003) , 10.1007/3-540-45110-2_36