Hyers-Ulam stability of n th order linear differential equation

作者: R. Murali , A. Ponmana Selvan

DOI: 10.22199/ISSN.0717-6279-2019-03-0035

关键词:

摘要: … -Rassias stability with initial conditions (1.2). 2 Now, we prove the Hyers-Ulam-Rassias stability of the linear differential equation (1.1) with boundary conditions (1.3). …

参考文章(21)
Stanislaw M. Ulam, A collection of mathematical problems ,(1960)
Akbar Zada, Omar Shah, Rahim Shah, Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems Applied Mathematics and Computation. ,vol. 271, pp. 512- 518 ,(2015) , 10.1016/J.AMC.2015.09.040
Tian Zhou Xu, On the stability of multi-Jensen mappings in β-normed spaces Applied Mathematics Letters. ,vol. 25, pp. 1866- 1870 ,(2012) , 10.1016/J.AML.2012.02.049
Claudi Alsina, Roman Ger, On Some Inequalities and Stability Results Related to the Exponential Function Journal of Inequalities and Applications. ,vol. 1998, pp. 246904- ,(1998) , 10.1155/S102558349800023X
Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces Proceedings of the American Mathematical Society. ,vol. 72, pp. 297- 300 ,(1978) , 10.1090/S0002-9939-1978-0507327-1
D. G. Bourgin, Classes of transformations and bordering transformations Bulletin of the American Mathematical Society. ,vol. 57, pp. 223- 237 ,(1951) , 10.1090/S0002-9904-1951-09511-7
D. H. Hyers, On the Stability of the Linear Functional Equation Proceedings of the National Academy of Sciences of the United States of America. ,vol. 27, pp. 222- 224 ,(1941) , 10.1073/PNAS.27.4.222
S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order Applied Mathematics Letters. ,vol. 19, pp. 1024- 1028 ,(2004) , 10.1016/J.AML.2005.11.004
Tosio AOKI, On the Stability of the linear Transformation in Banach Spaces. Journal of The Mathematical Society of Japan. ,vol. 2, pp. 64- 66 ,(1950) , 10.2969/JMSJ/00210064
Jinghao Huang, Soon-Mo Jung, Yongjin Li, ON HYERS-ULAM STABILITY OF NONLINEAR DIFFERENTIAL EQUATIONS Bulletin of The Korean Mathematical Society. ,vol. 52, pp. 685- 697 ,(2015) , 10.4134/BKMS.2015.52.2.685