Elasticity in curved topographies: Exact theories and linear approximations.

作者: Siyu Li , Roya Zandi , Alex Travesset

DOI: 10.1103/PHYSREVE.99.063005

关键词:

摘要: Almost all available results in elasticity on curved topographies are obtained within either a small curvature expansion or an empirical covariant generalization that accounts for screening between Gaussian and disclinations. In this paper, we present formulation of theory geometries unifies its underlying geometric topological content with the defects. The two different linear approximations widely used literature shown to arise as systematic expansions reference actual space. Taking concrete example two-dimensional crystal, without central disclination, constrained spherical cap, compare exact evaluate their range validity. We conclude some general discussion about universality nonlinear elasticity.

参考文章(38)
Jean-François Sadoc, Rémy Mosseri, Geometrical Frustration: Frontmatter ,(1999) , 10.1017/CBO9780511599934
Gregory M. Grason, Colloquium: Geometry and optimal packing of twisted columns and filaments Reviews of Modern Physics. ,vol. 87, pp. 401- 419 ,(2015) , 10.1103/REVMODPHYS.87.401
H. S. Seung, David R. Nelson, Defects in flexible membranes with crystalline order Physical Review A. ,vol. 38, pp. 1005- 1018 ,(1988) , 10.1103/PHYSREVA.38.1005
Efi Efrati, Eran Sharon, Raz Kupferman, The metric description of elasticity in residually stressed soft materials Soft Matter. ,vol. 9, pp. 8187- 8197 ,(2013) , 10.1039/C3SM50660F
David R. Nelson, Order, frustration, and defects in liquids and glasses Physical Review B. ,vol. 28, pp. 5515- 5535 ,(1983) , 10.1103/PHYSREVB.28.5515
Y. Klein, E. Efrati, E. Sharon, Shaping of Elastic Sheets by Prescription of Non-Euclidean Metrics Science. ,vol. 315, pp. 1116- 1120 ,(2007) , 10.1126/SCIENCE.1135994
William T. M. Irvine, Vincenzo Vitelli, Paul M. Chaikin, Pleats in crystals on curved surfaces Nature. ,vol. 468, pp. 947- 951 ,(2010) , 10.1038/NATURE09620
S Schneider, G Gompper, Shapes of crystalline domains on spherical fluid vesicles EPL. ,vol. 70, pp. 136- 142 ,(2005) , 10.1209/EPL/I2004-10464-2
Alex Travesset, Mark Bowick, The geometrical structure of 2D bond-orientational order Journal of Physics A. ,vol. 34, pp. 1535- 1548 ,(2001) , 10.1088/0305-4470/34/8/301
Alexander Yu. Morozov, Robijn F. Bruinsma, Assembly of viral capsids, buckling, and the Asaro-Grinfeld-Tiller instability. Physical Review E. ,vol. 81, pp. 041925- ,(2010) , 10.1103/PHYSREVE.81.041925