Feature selection for hyperspectral data based on recursive support vector machines

作者: Rui Zhang , Jianwen Ma

DOI: 10.1080/01431160802609718

关键词:

摘要: In this article, a feature selection algorithm for hyperspectral data based on recursive support vector machine (R‐SVM) is proposed. The new follows the scheme of state‐of‐the‐art algorithm, SVM elimination or SVM‐RFE, and uses ranking criterion derived from R‐SVM. Multiple SVMs are used to address multiclass problem. applied Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) select most informative bands resulting subsets compared with SVM‐RFE using accuracy classification as evaluation effectiveness selection. experimental results an agricultural case study indicate that subset generated by newly proposed generally competitive in terms more robust presence noise.

参考文章(12)
Guobin Zhu, Dan G. Blumberg, Classification using ASTER data and SVM algorithms; Remote Sensing of Environment. ,vol. 80, pp. 233- 240 ,(2002) , 10.1016/S0034-4257(01)00305-4
Rick Archibald, George Fann, Feature Selection and Classification of Hyperspectral Images With Support Vector Machines IEEE Geoscience and Remote Sensing Letters. ,vol. 4, pp. 674- 677 ,(2007) , 10.1109/LGRS.2007.905116
C. Huang, L. S. Davis, J. R. G. Townshend, An assessment of support vector machines for land cover classification International Journal of Remote Sensing. ,vol. 23, pp. 725- 749 ,(2002) , 10.1080/01431160110040323
G. Hughes, On the mean accuracy of statistical pattern recognizers IEEE Transactions on Information Theory. ,vol. 14, pp. 55- 63 ,(1968) , 10.1109/TIT.1968.1054102
K.-B. Duan, J.C. Rajapakse, H. Wang, F. Azuaje, Multiple SVM-RFE for gene selection in cancer classification with expression data IEEE Transactions on Nanobioscience. ,vol. 4, pp. 228- 234 ,(2005) , 10.1109/TNB.2005.853657
G. Camps-Valls, L. Bruzzone, Kernel-based methods for hyperspectral image classification IEEE Transactions on Geoscience and Remote Sensing. ,vol. 43, pp. 1351- 1362 ,(2005) , 10.1109/TGRS.2005.846154
Xuegong Zhang, Xin Lu, Qian Shi, Xiu-qin Xu, Hon-chiu E Leung, Lyndsay N Harris, James D Iglehart, Alexander Miron, Jun S Liu, Wing H Wong, Recursive SVM feature selection and sample classification for mass-spectrometry and microarray data BMC Bioinformatics. ,vol. 7, pp. 197- 197 ,(2006) , 10.1186/1471-2105-7-197
F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines IEEE Transactions on Geoscience and Remote Sensing. ,vol. 42, pp. 1778- 1790 ,(2004) , 10.1109/TGRS.2004.831865
Isabelle Guyon, Jason Weston, Stephen Barnhill, Vladimir Vapnik, Gene Selection for Cancer Classification using Support Vector Machines Machine Learning. ,vol. 46, pp. 389- 422 ,(2002) , 10.1023/A:1012487302797
Y. Bazi, F. Melgani, Toward an Optimal SVM Classification System for Hyperspectral Remote Sensing Images IEEE Transactions on Geoscience and Remote Sensing. ,vol. 44, pp. 3374- 3385 ,(2006) , 10.1109/TGRS.2006.880628