Detecting Coherence in Neuronal Data

作者: Klaus Pawelzik

DOI: 10.1007/978-1-4612-4320-5_7

关键词:

摘要: Spatially and temporally coherent activities emerge in many neuronal systems. The analysis of such responses most cases is based on simple correlation techniques which cannot detect nonlinear relationships. In this contribution I review new approaches for the signals. On one hand present model free are general notion statistical dependency apply to neurophysiological observables spike local field potentials, respectively. These quantify coherence information theoretical terms can help characterize underlying dynamics. show that contributions be analyzed a time resolved way method allows identification episodes background stochastic activity. other model-dependent approach particularly well suited assemblies exhibiting emergent burst activities. It assumes form network dynamics parameters directly determined from experimental trains. This Ansatz deals with fact observable trains only stochastically reflect an Despite mathematical simplicity it determines important characteristics like memory switching behavior synchronization methods illustrated by multiunit activity potential data visual cortex cat. Both independently reveal these switches between essentially two states, oscillatory one. within oscillations synchronizations occur identified high resolution either potentials as turns out across cortical distance quite rare event occurs only.

参考文章(27)
Jos J. Eggermont, The Correlative Brain Springer, Berlin, Heidelberg. pp. 267- 281 ,(1990) , 10.1007/978-3-642-51033-5_15
S. Kullback, R. A. Leibler, On Information and Sufficiency Annals of Mathematical Statistics. ,vol. 22, pp. 79- 86 ,(1951) , 10.1214/AOMS/1177729694
G. Palm, A. M. H. J. Aertsen, G. L. Gerstein, On the significance of correlations among neuronal spike trains. Biological Cybernetics. ,vol. 59, pp. 1- 11 ,(1988) , 10.1007/BF00336885
H.-U. Bauer, K. Pawelzik, Alternating oscillatory and stochastic dynamics in a model for a neuronal assembly Physica D: Nonlinear Phenomena. ,vol. 69, pp. 380- 393 ,(1993) , 10.1016/0167-2789(93)90101-6
R. Eckhorn, O. -J. Gr�sser, J. Kr�ller, K. Pellnitz, B. P�pel, Efficiency of different neuronal codes: information transfer calculations for three different neuronal systems. Biological Cybernetics. ,vol. 22, pp. 49- 60 ,(1976) , 10.1007/BF00340232
Th. Buzug, K. Pawelzik, J. von Stamm, G. Pfister, Mutual information and global strange attractors in Taylor-Couette flow Physica D: Nonlinear Phenomena. ,vol. 72, pp. 343- 350 ,(1994) , 10.1016/0167-2789(94)90237-2
G Buzsaki, Z Horvath, R Urioste, J Hetke, K Wise, High-frequency network oscillation in the hippocampus. Science. ,vol. 256, pp. 1025- 1027 ,(1992) , 10.1126/SCIENCE.1589772
F Rieke, D Warland, W Bialek, Coding Efficiency and Information Rates in Sensory Neurons EPL. ,vol. 22, pp. 151- 156 ,(1993) , 10.1209/0295-5075/22/2/013
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
Gert Hauske, Edgar Neuburger, Gerichtete Informationsgrößen zur Analyse gekoppelter Verhaltensweisen Kybernetika. ,vol. 4, pp. 171- 181 ,(1968) , 10.1007/BF00289039