Preliminary Slope Mass Movement Susceptibility Mapping Using DEM and LiDAR DEM

作者: M. Jaboyedoff , M. Choffet , M.-H. Derron , P. Horton , A. Loye

DOI: 10.1007/978-3-642-25495-6_5

关键词:

摘要: Hazard mapping in mountainous areas at the regional scale has greatly changed since 1990s thanks to improved digital elevation models (DEM). It is now possible model slope mass movement and floods with a high level of detail order improve geomorphologic mapping. We present examples multi-hazard susceptibility through two Swiss case studies, including landslides, rockfall, debris flows, snow avalanches floods, addition several original methods software tools. The aim these recent developments take advantage availability resolution DEM (HRDEM) for better modeling. Our results indicate good correspondence between inventories hazardous zones based on historical events predictions. This paper demonstrates that by adapting tools issued from modern technologies, it obtain reliable documents land planning purposes over large areas.

参考文章(109)
Ghali Adjel, Méthodes statistiques pour la détermination de la distance d'arrêt maximale des avalanches Houille Blanche-revue Internationale De L Eau. ,vol. 50, pp. 100- 104 ,(1995) , 10.1051/LHB/1995074
María José Domínguez-Cuesta, Montserrat Jiménez-Sánchez, Ana Colubi, Gil González-Rodríguez, Modelling shallow landslide susceptibility: a new approach in logistic regression by using favourability assessment International Journal of Earth Sciences. ,vol. 99, pp. 661- 674 ,(2010) , 10.1007/S00531-008-0414-0
Leonardo Cascini, Applicability of landslide susceptibility and hazard zoning at different scales Engineering Geology. ,vol. 102, pp. 164- 177 ,(2008) , 10.1016/J.ENGGEO.2008.03.016
Ralph A. Haugerud, David J. Harding, Samuel Y. Johnson, Jerry L. Harless, Craig S. Weaver, Brian L. Sherrod, High-Resolution Lidar Topography of the Puget Lowland, Washington —A Bonanza for Earth Science GSA Today. ,vol. 13, pp. 4- 10 ,(2003) , 10.1130/1052-5173(2003)13<0004:HLTOTP>2.0.CO;2
G.B Crosta, F Agliardi, How to obtain alert velocity thresholds for large rockslides Physics and Chemistry of The Earth. ,vol. 27, pp. 1557- 1565 ,(2002) , 10.1016/S1474-7065(02)00177-8
J. Chacón, C. Irigaray, T. Fernández, R. El Hamdouni, Engineering geology maps: landslides and geographical information systems Bulletin of Engineering Geology and the Environment. ,vol. 65, pp. 341- 411 ,(2006) , 10.1007/S10064-006-0064-Z
K. Lied, K. Bakkehøi, Empirical Calculations of Snow–Avalanche Run–out Distance Based on Topographic Parameters Journal of Glaciology. ,vol. 26, pp. 165- 177 ,(1980) , 10.1017/S0022143000010704
J. van Alphen, F. Martini, R. Loat, R. Slomp, R. Passchier, Flood risk mapping in Europe, experiences and best practices Journal of Flood Risk Management. ,vol. 2, pp. 285- 292 ,(2009) , 10.1111/J.1753-318X.2009.01045.X
M. Jaboyedoff, F. Baillifard, F. Philippossian, J.-D. Rouiller, Assessing fracture occurrence using "weighted fracturing density": a step towards estimating rock instability hazard Natural Hazards and Earth System Sciences. ,vol. 4, pp. 83- 93 ,(2004) , 10.5194/NHESS-4-83-2004