Detecting changes in the ar parameters of a nonstationary arma process

作者: George V. Moustakides , Albert Benveniste

DOI: 10.1080/17442508608833370

关键词:

摘要: We present a method for detecting changes in the AR parameters of an ARMA process with arbitrarily time varying MA parameters. Assuming that collection observations and set nominal invariant are given, we test if generated by or different The detection is derived using local asymptotic approach it based on estimation procedure which was shown to be consistent under nonstationarities.

参考文章(11)
C C Heyde, P Hall, Z W Birnbaum, E Lukacs, Martingale Limit Theory and Its Application ,(2014)
Robert B. Davies, Asymptotic inference in stationary Gaussian time-series Advances in Applied Probability. ,vol. 5, pp. 469- 497 ,(1973) , 10.2307/1425830
A. Benveniste, J.-J. Fuchs, Single sample modal identification of a nonstationary stochastic process IEEE Transactions on Automatic Control. ,vol. 30, pp. 66- 74 ,(1985) , 10.1109/TAC.1985.1103787
M. Basseville, A. Benveniste, Sequential detection of abrupt changes in spectral characteristics of digital signals IEEE Transactions on Information Theory. ,vol. 29, pp. 709- 724 ,(1983) , 10.1109/TIT.1983.1056737
K Astrom, Torsten Soderstrom, None, Uniqueness of the maximum likelihood estimates of the parameters of an ARMA model IEEE Transactions on Automatic Control. ,vol. 19, pp. 769- 773 ,(1974) , 10.1109/TAC.1974.1100735
P. Stoica, T. Soderstrom, Optimal instrumental variable estimation and approximate implementations IEEE Transactions on Automatic Control. ,vol. 28, pp. 757- 772 ,(1983) , 10.1109/TAC.1983.1103312