On finding minimal length superstrings

作者: John Gallant , David Maier , James Astorer

DOI: 10.1016/0022-0000(80)90004-5

关键词:

摘要: Abstract A superstring of a set strings {s1,…, sn} is string s containing each si, 1 ⩽ i n, as substring. The problem is: Given S and positive integer K, does have length K? has applications to data storage; specifically, compression. We consider the complexity problem. NP-completeness results dealing with sets over both finite infinite alphabets are presented. Also, for restricted version problem, linear time algorithm given.

参考文章(7)
Aho AV, JE Hopcroft, JD Ullman, The Design and Analysis of Computer Algorithms ,(1974)
M.R. Garey, D.S. Johnson, L. Stockmeyer, Some simplified NP-complete graph problems Theoretical Computer Science. ,vol. 1, pp. 237- 267 ,(1976) , 10.1016/0304-3975(76)90059-1
M. R. Garey, D. S. Johnson, L. Stockmeyer, Some simplified NP-complete problems Proceedings of the sixth annual ACM symposium on Theory of computing - STOC '74. pp. 47- 63 ,(1974) , 10.1145/800119.803884
Stephen A. Cook, The complexity of theorem-proving procedures symposium on the theory of computing. pp. 151- 158 ,(1971) , 10.1145/800157.805047
David Huffman, A Method for the Construction of Minimum-Redundancy Codes Proceedings of the IRE. ,vol. 40, pp. 1098- 1101 ,(1952) , 10.1109/JRPROC.1952.273898
Richard M. Karp, Reducibility Among Combinatorial Problems. Complexity of Computer Computations. pp. 85- 103 ,(1972)
Frank Harary, Graph theory ,(1969)