Condition numbers and equilibration of matrices

作者: A. van der Sluis

DOI: 10.1007/BF02165096

关键词:

摘要: Introduction In numerical linear algebra one meets condition numbers [[AII []A-11[ and similar quantities such as (max [a,i[)[[A-1H [[Ai[[ [[A-l[], where A = (a,i) i is the /'-th column of A. The norms are very diverse. problem then to determine a rowand/or column-scaling which minimizes quanti ty under consideration. I t purpose this paper specify class for those scalings can be given explicitly. results will extensions some in [2]. They also hold non-square matrices. All proofs completely elementary. Also, cases minimizing scaling cannot explicitly, it said how far at most certain consideration may away from its minimum.

参考文章(6)
F. L. Bauer, Optimally scaled matrices Numerische Mathematik. ,vol. 5, pp. 73- 87 ,(1963) , 10.1007/BF01385880
F. L. Bauer, J. Stoer, C. Witzgall, Absolute and monotonic norms Numerische Mathematik. ,vol. 3, pp. 257- 264 ,(1961) , 10.1007/BF01386026
George E Forsythe, Ernst G Straus, None, On best conditioned matrices Proceedings of the American Mathematical Society. ,vol. 6, pp. 340- 345 ,(1955) , 10.1090/S0002-9939-1955-0069585-4
George E. Forsythe, Wolfgang R. Wasow, William Nachbar, Finite-Difference Methods for Partial Differential Equations ,(2004)
Alexander Ostrowski, Über Normen von Matrizen. Mathematische Zeitschrift. ,vol. 63, pp. 2- 18 ,(1955) , 10.1007/BF01187920
George E. Forsythe, Wolfgang R. Wasow, Finite-difference methods for partial differential equations Applied Mathematics Series. ,(1960)