Exact solutions of the axisymmetric plasma equilibrium equation

作者: L. De Menna

DOI: 10.1088/0029-5515/17/3/006

关键词:

摘要: With a general method based on the theory of pseudoanalytic functions, sequence exact solutions magnetohydrodynamic equilibrium equation an axisymmetric plasma configuration is found. A particular solution corresponding to reasonable boundary conditions and pressure current density profiles analysed in some detail. The Mercier criterion used study stability against localized perturbations.

参考文章(9)
H. R. Strauss, CRITICAL $beta$ TOROIDAL EQUILIBRIUM. Physical Review Letters. ,vol. 26, pp. 616- 618 ,(1971) , 10.1103/PHYSREVLETT.26.616
F. Herrnegger, E.K. Maschke, Stability of exact toroidal MHD-equilibrium with non-circular cross-section Nuclear Fusion. ,vol. 14, pp. 119- 123 ,(1974) , 10.1088/0029-5515/14/1/020
Lipman Bers, Abe Gelbart, On a class of functions defined by partial differential equations Transactions of the American Mathematical Society. ,vol. 56, pp. 67- 93 ,(1944) , 10.1090/S0002-9947-1944-0010910-5
J. Pantuso Sudano, Equilibrium of a toroidal plasma Physics of Fluids. ,vol. 17, pp. 1915- 1916 ,(1974) , 10.1063/1.1694640
H. Oshiyama, Y. Fukutani, Exact solutions of toroidal equilibrium and MHD stabilities Nuclear Fusion. ,vol. 14, pp. 793- 796 ,(1974) , 10.1088/0029-5515/14/6/004
F. A. Haas, Pressure limitation in a simple model of a tokamak Physics of Fluids. ,vol. 16, pp. 152- 155 ,(1973) , 10.1063/1.1694163
Lipman Bers, An outline of the theory of pseudoanalytic functions Bulletin of the American Mathematical Society. ,vol. 62, pp. 291- 331 ,(1956) , 10.1090/S0002-9904-1956-10037-2
C. S. Lai, Mary Verleun, An exact solution for toroidal plasma in equilibrium Physics of Fluids. ,vol. 19, pp. 1066- 1067 ,(1976) , 10.1063/1.861583