Two geometrical properties of solutions of semilinear problems

作者: P. L. Lionst

DOI: 10.1080/00036818108839367

关键词:

摘要: (1981). Two geometrical properties of solutions semilinear problems. Applicable Analysis: Vol. 12, No. 4, pp. 267-272.

参考文章(6)
Henri Berestycki, Le nombre de solutions de certains problèmes semi-linéaires elliptiques Journal of Functional Analysis. ,vol. 40, pp. 1- 29 ,(1981) , 10.1016/0022-1236(81)90069-0
B. Gidas, Wei-Ming Ni, L. Nirenberg, Symmetry and related properties via the maximum principle Communications in Mathematical Physics. ,vol. 68, pp. 209- 243 ,(1979) , 10.1007/BF01221125
P. S. Crooke, R. P. Sperb, Isoperimetric Inequalities in a Class of Nonlinear Eigenvalue Problems SIAM Journal on Mathematical Analysis. ,vol. 9, pp. 671- 681 ,(1978) , 10.1137/0509048
Richard S Ellis, Charles M Newman, Extensions of the Maximum Principle: Exponential Preservation by the Heat Equation Journal of Differential Equations. ,vol. 30, pp. 365- 379 ,(1978) , 10.1016/0022-0396(78)90006-2
Giorgio Talenti, Elliptic equations and rearrangements Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 3, pp. 697- 718 ,(1976)