A topological theorem and correlations, within the context of stochastic evolution

作者: E.F. Costanza , G. Costanza

DOI: 10.1016/J.PHYSA.2015.04.037

关键词:

摘要: Abstract A topological theorem, that proves any d-dimensional lattice is equivalent to a one-dimensional one, allows write the evolution equations as function of only one spatial coordinate. Stochastic and continuum deterministic equations, are derived from set discrete stochastic equations. The dynamical variables correlations obtained for processes evolve non-Markovianly. Some relatively simple examples given in order illustrate procedures.

参考文章(25)
Richard P. Feynman, The Feynman lectures on physics volome III : quantum mechanics / Richard P. Feyman, Robert B. Leighton, Marhew Sands 1. FISIKA,The Feynman lectures on physics volome III : quantum mechanics / Richard P. Feyman, Robert B. Leighton, Marhew Sands. ,vol. 1965, pp. 1- 99 ,(1965)
Albert Roach Hibbs, Richard Phillips Feynman, Quantum Mechanics and Path Integrals ,(1965)
G. Costanza, A theorem allowing to derive deterministic evolution equations from stochastic evolution equations Physica A-statistical Mechanics and Its Applications. ,vol. 390, pp. 1713- 1722 ,(2011) , 10.1016/J.PHYSA.2010.08.023
B. Gaveau, M. Moreau, On a class of non-Markovian collision processes and their evolution equation Letters in Mathematical Physics. ,vol. 9, pp. 213- 220 ,(1985) , 10.1007/BF00402832
Bruce M. Boghosian, Washington Taylor, Quantum lattice-gas model for the many-particle Schrödinger equation in d dimensions Physical Review E. ,vol. 57, pp. 54- 66 ,(1998) , 10.1103/PHYSREVE.57.54
P. Hanggi, H. Thomas, H. Grabert, P. Talkner, Note on time evolution of non-Markov processes Journal of Statistical Physics. ,vol. 18, pp. 155- 159 ,(1978) , 10.1007/BF01014306
S. Succi, R. Benzi, Lattice Boltzmann equation for quantum mechanics Physica D: Nonlinear Phenomena. ,vol. 69, pp. 327- 332 ,(1993) , 10.1016/0167-2789(93)90096-J
G. Costanza, Discrete stochastic evolution rules and continuum evolution equations Physica A-statistical Mechanics and Its Applications. ,vol. 388, pp. 2600- 2622 ,(2009) , 10.1016/J.PHYSA.2009.02.042
G. Costanza, Non-Markovian stochastic evolution equations Physica A-statistical Mechanics and Its Applications. ,vol. 402, pp. 224- 235 ,(2014) , 10.1016/J.PHYSA.2014.01.038